| 系統識別號 | U0002-3108202111131000 |
|---|---|
| DOI | 10.6846/TKU.2021.00865 |
| 論文名稱(中文) | 無線充電通訊網路中基於DT-SWIPT技術最小化能源消耗之時間分配研究 |
| 論文名稱(英文) | Time Allocation for Minimizing Energy Consumption in DT-SWIPT Assisted Wireless Powered Communication Networks |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 資訊工程學系碩士班 |
| 系所名稱(英文) | Department of Computer Science and Information Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 109 |
| 學期 | 2 |
| 出版年 | 110 |
| 研究生(中文) | 蔡宇勝 |
| 研究生(英文) | Yu-Sheng Tsai |
| 學號 | 609410021 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | 英文 |
| 口試日期 | 2021-07-05 |
| 論文頁數 | 52頁 |
| 口試委員 |
指導教授
-
石貴平
委員 - 石貴平 委員 - 陳彥達 委員 - 王三元 |
| 關鍵字(中) |
無線充電通訊網路 DT-SWIPT 無線充電技術 HTT協議 時間分配 |
| 關鍵字(英) |
Wireless Powered Communication Networks DT-SWIPT Wireless Energy Transfer HTT protocol Time allocation |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本論文在解決無線充電通訊網路中,能源消耗最小化的問題。我們考慮到提供電能的混合存取點有電量的限制,在滿足網路中所有無線裝置的吞吐量後,透過時間分配的方式,最佳化HAP以及無線裝置的傳輸時間,使網路的能耗為最低。本論文採用TDMA的傳輸模式,無線裝置根據HTT (Harvest-Then-Transmit) 協議進行能源的獲取以及資料的傳輸。本論文提出DT-SWIPT (Different Target Simultaneous Wireless Information and Power Transfer)機制,讓無線裝置在完成資料的傳輸後,可以將多餘的電能分享給網路中其他尚未傳輸的無線裝置,進一步舒緩網路中的能源開銷。本論文除了提出DT-SWIPT的訊框結構之外,也考慮到HAP在接收無線裝置傳輸的資料時,其資料的訊號功率與雜訊的訊雜比必需滿足SNR (Signal-to-noise ratio)的門檻值,以確保HAP可以解析該筆訊號。我們將能源消耗最小化之問題轉換成非線性規劃模型,並透過SQP (Sequential Quadratic Programming)求出最佳之時間分配。由於最佳化模型計算的時間通常較長,因此我們將原始問題簡化,並提出一個Heristic的作法。在Heristic的作法中,我們根據Linear Search設計演算法,透過迭代的方式找到問題的近似解,並證明了其時間複雜度為O(nlogn)。最後,透過模擬分析顯示本論文的方法可以有效的減少網路中的能耗,並保證所有無線裝置傳輸至HAP時之訊號的SNR值。 |
| 英文摘要 |
This paper addresses the energy consumption minimization (ECm) problem in Wireless Powered Communication Networks (WPCNs). We take the energy limitation of HAP (Hybrid Access Point) into account and optimize the transmission time of HAP and wireless stations while meeting the throughput demand of all wireless stations in the network. The TDMA protocol is adopted, and the wireless station obtains energy and transmits data according to the HTT (Harvest then transmit) protocol. We propose the DT-SWIPT (Different Target Simultaneous Wireless Information and Power Transfer) mechanism, which allows wireless stations to share the excess energy to other wireless stations that have not yet been transmitted after completing the data transmission. Therefore, DT-SWIPT can reduce the energy consumption of the network. In addition to proposing the frame structure of DT-SWIPT, this paper also considers that when HAP receives data transmitted by wireless stations, the signal-to-noise ratio of the signal power of the data to the power of the noise must meet the SNR threshold to ensure that HAP can decode the signal. We transform the ECm problem into a nonlinear programming model. Then, we find the optimal time allocation through SQP (sequential quantitative programming). Since the calculation time of the optimization model is usually longer, we simplify the ECm problem and propose a Heuristic Method. In the Heuristic Method, we design an algorithm based on Linear Search, find an approximate solution to the problem through iteration. Moreover, we prove that the time complexity of the Algorithm is O(n logn). Finally, simulation analysis shows that the method proposed in this paper can effectively reduce the energy consumption and ensure the SNR value of the signal when all wireless stations transmit to the HAP. |
| 第三語言摘要 | |
| 論文目次 |
第1章 Introduction 1 第2章 Preliminaries 7 2.1 Network Model 7 2.2 SWIPT v.s. DT-SWIPT 8 2.3 SNR threshold of HAP received signal 12 第3章 DT-SWIPT Assisted Time Allocation for Energy Consumption Minimization 14 3.1 Problem Formulation 14 3.2 SQP-based Algorithm for Finding the Optimal Solution of D-ECm 19 第4章 Heuristic Method 23 4.1 Problem Formulation for Simplifing D-ECm 23 4.2 DaTA-H Algorithm for S-ECM 25 第5章 Performance Evaluation 30 5.1 Comparison of Network’s Energy Consumption 32 5.2 Comparison of Network’s Sum-Throughput 37 5.3 Comparison of Network’s Energy Efficiency 41 5.4 Comparison of Failed Decoded Signals 45 第6章 Conclusion 48 參考文獻 49 圖目錄 圖 一、網路模型 8 圖 二、SWIPT技術之示意圖 9 圖 三、DT-SWIPT切換接收者之示意圖 10 圖 四、DT-SWIPT傳輸者之時間軸示意圖 11 圖 五、DT-SWIPT機制之訊框結構 12 圖 六、一般場景中網路能源消耗比較圖 33 圖 七、特殊場景中網路能源消耗比較圖 34 圖 八、不同α之一般場景中DaTA-H之網路能源消耗比較圖 36 圖 九、不同α之特殊場景中DaTA-H之網路能源消耗比較圖 36 圖 十、一般場景中網路總吞吐量比較圖 38 圖 十一、特殊場景中網路總吞吐量比較圖 38 圖 十二、不同α之一般場景中DaTA-H之網路總吞吐量比較圖 40 圖 十三、不同α之特殊場景中DaTA-H之網路總吞吐量比較圖 40 圖 十四、一般場景中網路能源效率比較圖 42 圖 十五、特殊場景中網路能源效率比較圖 43 圖 十六、不同α之一般場景中DaTA-H之能源效率比較圖 44 圖 十七、不同α之特殊場景中DaTA-H之能源效率比較圖 45 圖 十八、解析失敗之訊號數量比較圖。 46 表目錄 表 一、數據模擬之參數表格 31 |
| 參考文獻 |
[1] Z. Zhang, H. Pang, A. Georgiadis, and C. Cecati, “Wireless power transfer—An overview,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1044–1058, Feb. 2019. [2] Y. Alsaba, S. K. A. Rahim, and C. Y. Leow, “Beamforming in wireless energy harvesting communications systems: a survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1329–1360, 2nd Quart., 2018. [3] S. Parida, S. Majhi and S. K. Das, “Wireless powered microwave and mmWave based communication networks - a survey,” International Conference on Inventive Computation Technologies (ICICT), 2020, pp. 98-102 [4] C. K. Ho and R. Zhang, ‘‘Optimal energy allocation for wireless communications with energy harvesting constraints,’’ IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sep. 2012. [5] R. Mahapatra, Y. Nijsure, G. Kaddoum, N. Ul Hassan and C. Yuen, "Energy Efficiency Tradeoff Mechanism Towards Wireless Green Communication: A Survey," IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 686-705, Firstquarter 2016. [6] H. Ju and R. Zhang, "Throughput Maximization in Wireless Powered Communication Networks," IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 418-428, January 2014. [7] P. Ramezani and A. Jamalipour, “Throughput maximization in backscatter assisted wireless powered communication networks,” in Proc. IEEE Int. Conf. Commun., May 2019, pp. 1–6. [8] P. Ramezani and A. Jamalipour, “Optimal resource allocation in backscatter assisted WPCN with practical energy harvesting model,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 12406–12410, Dec. 2019. [9] J. C. Kwan and A. O. Fapojuwo, “Sum-Throughput and Fairness Optimization of a Wireless Energy Harvesting Sensor Network,” in Proceedings of the IEEE 90th Vehicular Technology Conference (VTC 2019), Honolulu, HI, USA, 2019, pp. 1-6. [10] M. S. Syam, Y. L. Che, S. Luo and K. wu, “Joint Downlink-Uplink Throughput optimization in Wireless Powered Communication Networks,” in Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC 2019), Changchun, China, 2019, pp. 852-857. [11] H. Choi, D. Ron, M. Sengly, and J. Lee, “Energy-Neutral Wireless Sensor Network Based on SWIPT in Wireless Powered Communication Networks," in Proceedings of the IEEE International Conference on Communications (ICC 2020), pp. 1-7, Dublin, Ireland, 2020. [12] Q. Pu, Z. Wang, Z. Fan, X. Wan and H. Wan, "Energy efficient resource allocation for wireless power transfer enabled massive MIMO systems with proportional fairness," in Proc. IEEE 20th International Conference on Communication Technology (ICCT), 2020, pp. 404-408. [13] H. Azarhava and J. Musevi Niya, "Energy Efficient Resource Allocation in Wireless Energy Harvesting Sensor Networks," IEEE Wireless Communications Letters, vol. 9, no. 7, pp. 1000-1003, July 2020. [14] H. Lim and T. Hwang, “Energy-Efficient MISO Wireless Powered Communications,” in Proceedings of the 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC 2019), Las Vegas, NV, USA, 2019, pp. 1-6. [15] J. Liu, K. Xiong, P. Fan and Z. Zhong, "Resource Allocation in Wireless Powered Sensor Networks With Circuit Energy Consumption Constraints," IEEE Access, vol. 5, pp. 22775-22782, 2017. [16] Z. Yu, K. Chi, P. Hu, Y. Zhu and X. Liu, "Energy Provision Minimization in Wireless Powered Communication Networks With Node Throughput Requirement," IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 7057-7070, July 2019. [17] T. Wang, Y. Shen, L. Gao, Y. Jiang, T. Ma and X. Zhu, "Energy Consumption Minimization With Throughput Heterogeneity in Wireless-Powered Body Area Networks," IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3369-3383, 1 March1, 2021 [18] H. Ge, Z. Yu, K. Chi, K. Mao, Q. Shao, and L. Chen, “Energy Provision Minimization in Large-scale Wireless Powered Communication Networks with Throughput Demand,” IET Communications, vol. 14, no. 3, pp. 458-465, Feb. 2020. [19] Nocedal, J. and Wright, S. Numerical Optimization, 2nd. ed., Ch. 18. Springer, 2006. [20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004. [21] T. D. P. Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, ‘‘Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1, pp. 264–302, 4th Quart., 2017. [22] M. A. Hossain, R. M. Noor, K. A. Yau, I. Ahmedy, and S. S. Anjum, ‘‘A survey on simultaneous wireless information and power transfer with cooperative relay and future challenges,’’ IEEE Access, vol. 7, pp. 19166–19198, 2019. [23] Signal-to-Noise Ratio (SNR) and Wireless Signal Strength. [Online]. Available: https://documentation.meraki.com/MR/WiFi_Basics_and_Best_Practices/Signal-to-Noise_Ratio_(SNR)_and_Wireless_Signal_Strength [24] Koushik Sinha, Sasthi C. Ghosh and Bhabani P. Sinha, “Wireless Networks and Mobile Computing” CRC, 2015. [25] K.-P. Shih, Y.-D. Chen, and C.-C. Chang, ‘‘A physical/virtual carrier-sense-based power control MAC protocol for collision avoidance in wireless ad hoc networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 2, pp. 193–207, Feb. 2011. [26] F. Perez Fontan and P. Marino Espineira, “Modeling the Wireless Propagation Channel” Willey, 2008. [27] Herbert Taub, Donald L. Schilling (1986). Principles of Communication Systems. McGraw-Hill. [28] MATLAB R2020b and Optimization Toolbox. [Online]. Available: https://www.mathworks.com/help/optim/index.html |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信