系統識別號 | U0002-3107202316275500 |
---|---|
DOI | 10.6846/tku202300521 |
論文名稱(中文) | 肥胖對美國中老年人勞動市場成效的影響:半母數的分析 |
論文名稱(英文) | The impact of obesity on labor market outcomes among middle-aged and elder Americans:a semiparametric analysis |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 產業經濟學系碩士班 |
系所名稱(英文) | Department of Industrial Economics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 劉蕙嫻 |
研究生(英文) | Hui-Hsien Liu |
學號 | 610540121 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-07-06 |
論文頁數 | 106頁 |
口試委員 |
指導教授
-
胡登淵(tengyuan.hu@gmail.com)
口試委員 - 陳世能 口試委員 - 陳鎮洲 |
關鍵字(中) |
工資 身體質量指數 腰圍 中老年人 半母數模型 |
關鍵字(英) |
wage BMI waist circumference middle-aged and elderly semiparametric model |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近年來,各個國家肥胖盛行率持續地成長,許多研究發現肥胖不僅對健康造成負面的影響,同時也為社會經濟和勞動市場帶來負向的衝擊。然而其中只有少數去探究中老年人肥胖對薪資的影響。隨著人口老化,身材走樣的中老年人是否能賺到與生產力一致的合理工資,逐漸成為受關注的議題。有鑒於此,本篇研究旨在探討肥胖對美國中老年人工資的影響,並且採用非單一衡量肥胖的指標-自我報告和測量BMI與腰圍,為了闡述可能存在的非線性關係,主要使用半母數模型進行分析,資料來自於美國健康與退休調查(HRS)2016年的數據。本文以區域的過重盛行率和肥胖盛行率作為工具變數,經由控制函數(Control Function)法來處理潛在的內生性問題,此外,我們還將資料依照性別和種族劃分。研究結果顯示,白人和非裔美國人方面,自我報告和測量BMI與腰圍皆不存在內生性的問題,且自我報告和測量BMI與白人男性的工資呈現微倒U型的關聯,而當白人男性腰圍超過肥胖界定的範圍值-102公分,其工資會隨著腰圍增加先上升後下降,對於白人女性而言,三種指標與工資皆不存在明顯的負向關係;在非裔美國人男性方面,當自我報告BMI增加時,工資先微小幅度的增加後下降,而工資會隨著測量BMI和腰圍增加上升到一定的程度後再下降,非裔美國人女性的工資會隨著自我報告與測量BMI增加微小幅度的上升,然後再微小幅度的下降,腰圍則與非裔美國人女性的工資存在微倒U型的關係。現有文獻中分析不同國家而年齡層也不同的樣本經常指出肥胖對女性薪資的負向影響比較明顯,有別於文獻,本研究發現:就美國中老年人而言,一定程度的自我報告與測量BMI和腰圍值增加時,與男性的工資負向關係較女性明顯,特別是在非裔美國人中更能觀察到如此型態,此外,在控制健康與疾病相關變數後,仍得到與此一致的估計結果。 |
英文摘要 |
In recent years, obesity prevalence has continuously increased in various countries. Many studies find that obesity status has negative impacts on health, socioeconomic status, and labor market outcomes. However, only a few of these studies have examined the effect of obesity on the wages of older adults. As the population ages, whether middle-aged and older people who have lost attractive body shape can earn a reasonable wage consistent with productivity has gradually become an issue of concern. This study, hence, aims to investigate the impact of obesity on the wages of middle-aged and elderly in the United States. The data come from the 2016 Health and Retirement Survey in the United States. To illustrate possible non-linear relationships, this study uses a semiparametric model to estimate the impact of self-reported BMI, measured BMI, and waist circumference on wages. It uses the regional overweight prevalence and obesity prevalence as instrumental variables and uses the control function approach to deal with potential endogeneity problems. The research findings indicate that self-reported, measured BMI and waist circumference are exogenous for white and African Americans. Self-reported and measured BMI are associated with wages among white males in a slightly inverted U-shaped. When the waist circumference of white males exceeds 102 cm, which is the threshold standard for obesity, their wages will first rise and then fall as the waist circumference increases. In contrast, there is no significant negative relationship between the three indicators (self-reported BMI, measured BMI, and waist circumference) and wages for white females. In the case of African American males, when self-reported BMI increases, wages increase slightly and then decrease. Moreover, wages of African American males increase with the rise of measured BMI and waist circumference up to a certain point and then decrease. For African American females, initially, as the self-reported and measured BMI increase, there is a slight upward trend in wages. Subsequently, as the self-reported and measured BMI continue to rise, wages show a slight decline. Waist circumference exhibits a slightly inverted U-shaped relationship with wages among African American females. Existing literature analyzing different countries and age groups suggests a more pronounced negative impact of obesity on female wages. In contrast to the literature, in this study, for middle-aged and elderly in the United States, as self-reported BMI, measured BMI and waist circumference increase to a certain extent, the negative relationship with wages is more pronounced among males than females. This pattern holds especially for African Americans. Moreover, after controlling for health and diseases, the negative relationship between men’s wages is still more apparent than that of women. |
第三語言摘要 | |
論文目次 |
目錄 第一章 緒論 1 第二章 文獻回顧 3 第三章 資料來源與變數定義 9 第一節 資料來源 9 第二節 樣本篩選 10 第三節 變數定義與敘述統計 15 第四章 實證模型設定 28 第五章 實證結果分析 31 第一節 自我報告BMI對工資的影響 31 第二節 測量BMI與腰圍對工資的影響 48 第六章 結論與建議 77 第一節 研究結論 77 第二節 建議 79 參考文獻 80 附錄 84 表目錄 表2-1 肥胖對勞動市場成效影響文獻整理 7 表3-1 各變數定義表 19 表3-2 勞動人口樣本敘述性統計表-就業(僅自我報告BMI樣本) 22 表3-3 男性樣本敘述性統計表-工資(僅自我報告BMI樣本) 23 表3-4 女性樣本敘述性統計表-工資(僅自我報告BMI樣本) 24 表3-5 三種衡量肥胖指標樣本之主要變數敘述統計表-依照種族劃分 25 表5-1 自我報告BMI對工資的影響部分線性模型估計結果-男性外生 34 表5-2 自我報告BMI對工資的影響部分線性模型估計結果-女性外生 36 表5-3 自我報告BMI對工資的影響部分線性模型估計結果-男性內生 42 表5-4 自我報告BMI對工資的影響部分線性模型估計結果-女性內生 44 表5-5 測量BMI對工資的影響部分線性模型估計結果-男性外生 51 表5-6 腰圍對工資的影響部分線性模型估計結果-男性外生 53 表5-7 測量BMI對工資的影響部分線性模型估計結果-女性外生 55 表5-8 腰圍對工資的影響部分線性模型估計結果-女性外生 57 表5-9 測量BMI對工資的影響部分線性模型估計結果-男性內生 65 表5-10 腰圍對工資的影響部分線性模型估計結果-男性內生 67 表5-11 測量BMI對工資的影響部分線性模型估計結果-女性內生 69 表5-12 腰圍對工資的影響部分線性模型估計結果-女性內生 71 附錄表1 Rand HRS涵蓋七個群體之說明 84 附錄表2 就業Probit模型估計結果-僅自我報告BMI樣本 85 附錄表3 就業Probit模型估計結果-使用三種衡量指標樣本 86 附錄表4 三種衡量肥胖指標對工資OLS估計結果-全部男性 87 附錄表5 三種衡量肥胖指標對工資OLS估計結果-全部女性 89 附錄表6 三種衡量肥胖指標對工資OLS估計結果-白人男性 91 附錄表7 三種衡量肥胖指標對工資OLS估計結果-白人女性 93 附錄表8 三種衡量肥胖指標對工資OLS估計結果-非裔美國人男性 95 附錄表9 三種衡量肥胖指標對工資OLS估計結果-非裔美國人女性 97 附錄表10 三種衡量肥胖指標對工資OLS估計結果-其他種族男性 99 附錄表11 三種衡量肥胖指標對工資OLS估計結果-其他種族女性 101 圖目錄 圖3-1 50歲以上勞動人口BMI密度分布圖 13 圖3-2 50歲以上就業人口BMI密度分布圖 13 圖3-3 50歲以上勞動人口腰圍密度分布圖 14 圖3-4 50歲以上就業人口腰圍密度分布圖 14 圖5-1 自我報告BMI對工資的影響半母數估計結果-男性外生 38 圖5-2 自我報告BMI對工資的影響半母數估計結果-女性外生 39 圖5-3 自我報告BMI對工資的影響半母數估計結果-男性內生 46 圖5-4 自我報告BMI對工資的影響半母數估計結果-女性內生 47 圖5-5 測量BMI對工資的影響半母數估計結果-男性外生 59 圖5-6 測量BMI對工資的影響半母數估計結果-女性外生 60 圖5-7 腰圍對工資的影響半母數估計結果-男性外生 61 圖5-8 腰圍對工資的影響半母數估計結果-女性外生 62 圖5-9 測量BMI對工資的影響半母數估計結果-男性內生 73 圖5-10 測量BMI對工資的影響半母數估計結果-女性內生 74 圖5-11 腰圍對工資的影響半母數估計結果-男性內生 75 圖5-12 腰圍對工資的影響半母數估計結果-女性內生 76 附錄圖5-1 自我報告BMI對工資的影響半母數估計結果-男性外生 103 附錄圖5-2 測量BMI對工資的影響半母數估計結果-男性外生 103 附錄圖5-3 腰圍對工資的影響半母數估計結果-男性外生 103 附錄圖5-4 自我報告BMI對工資的影響半母數估計結果-女性外生 104 附錄圖5-5 測量BMI對工資的影響半母數估計結果-女性外生 104 附錄圖5-6 腰圍對工資的影響半母數估計結果-女性外生 104 附錄圖5-7 自我報告BMI對工資的影響半母數估計結果-男性內生 105 附錄圖5-8 測量BMI對工資的影響半母數估計結果-男性內生 105 附錄圖5-9 腰圍對工資的影響半母數估計結果-男性內生 105 附錄圖5-10 自我報告BMI對工資的影響半母數估計結果-女性內生 106 附錄圖5-11 測量BMI對工資的影響半母數估計結果-女性內生 106 附錄圖5-12 腰圍對工資的影響半母數估計結果-女性內生 106 |
參考文獻 |
Alauddin Majumder, M. (2013). Does obesity matter for wages? Evidence from the United States. Economic Papers: A Journal of Applied Economics and Policy, 32(2), 200-217. Averett, S., & Korenman, S. (1996). The Economic Reality of the Beauty Myth. Journal of Human Resources, 304-330. Baum, C. L., & Ford, W. F. (2004). The wage effects of obesity: a longitudinal study. Health Economics, 13(9), 885-899. Burkhauser, R. V., & Cawley, J. (2008). Beyond BMI: the value of more accurate measures of fatness and obesity in social science research. Journal of Health Economics, 27(2), 519-529. Caliendo, M., & Gehrsitz, M. (2016). Obesity and the labor market: A fresh look at the weight penalty. Economics & Human Biology, 23, 209-225. Cawley, J. (2004). The impact of obesity on wages. Journal of Human Resources, 39(2), 451-474. Cawley, J., Biener, A., Meyerhoefer, C., Ding, Y., Zvenyach, T., Smolarz, B. G., & Ramasamy, A. (2021). Direct medical costs of obesity in the United States and the most populous states. Journal of Managed Care & Specialty Pharmacy, 27(3), 354-366. Cleveland, L. P., Grummon, A. H., Konieczynski, E., Mancini, S., Rao, A., Simon, D., & Block, J. P. (2023). Obesity prevention across the US: A review of state‐level policies from 2009 to 2019. Obesity Science & Practice, 9(2), 95-102. Conolly, A., Craig, S., & Gebert, S. (2019). Health Survey for England 2018 overweight and obesity in adults and children. London: Health and Social Care Information Centre. Han, E., Norton, E. C., & Powell, L. M. (2011). Direct and indirect effects of body weight on adult wages. Economics & Human Biology, 9(4), 381-392. Han, E., Norton, E. C., & Stearns, S. C. (2009). Weight and wages: fat versus lean paychecks. Health Economics, 18(5), 535-548. Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the Econometric Society, 153-161. Heeringa, S. G., & Connor, J. H. (1995). Technical description of the Health and Retirement Survey sample design. Ann Arbor: University of Michigan. Kinge, J. M. (2016). Body mass index and employment status: a new look. Economics & Human Biology, 22, 117-125. Kinge, J. M. (2017). Waist circumference, body mass index, and employment outcomes. The European Journal of Health Economics, 18(6), 787-799. Komlos, J., Smith, P. K., & Bogin, B. (2004). Obesity and the rate of time preference: is there a connection? Journal of Biosocial Science, 36(2), 209-219. Krzysztoszek, J., Laudanska-Krzeminska, I., & Bronikowski, M. (2019). Assessment of epidemiological obesity among adults in EU countries. Annals of Agricultural and Environmental Medicine, 26(2). Lean, M. E. J., Han, T. S., & Morrison, C. E. (1995). Waist circumference as a measure for indicating need for weight management. Bmj, 311(6998), 158-161. Lee, H., Ahn, R., Kim, T. H., & Han, E. (2019). Impact of obesity on employment and wages among young adults: observational study with panel data. International Journal of Environmental Research and Public Health, 16(1), 139. Lindeboom, M., Lundborg, P., & Van Der Klaauw, B. (2010). Assessing the impact of obesity on labor market outcomes. Economics & Human Biology, 8(3), 309-319. Liu, B., Du, Y., Wu, Y., Snetselaar, L. G., Wallace, R. B., & Bao, W. (2021). Trends in obesity and adiposity measures by race or ethnicity among adults in the United States 2011-18: population based study. Bmj, 372. Lundborg, P., Bolin, K., Höjgård, S., & Lindgren, B. (2006). Obesity and occupational attainment among the 50+ of Europe. In The Economics of Obesity (Vol. 17, pp. 219-251). Emerald Group Publishing Limited. Morris, S. (2006). Body mass index and occupational attainment. Journal of Health Economics, 25(2), 347-364. Morris, S. (2007). The impact of obesity on employment. Labour Economics, 14(3), 413-433. Mosca, I. (2013). Body mass index, waist circumference and employment: Evidence from older Irish adults. Economics & Human Biology, 11(4), 522-533. O’Neill, D. (2015). Measuring obesity in the absence of a gold standard. Economics & Human Biology, 17, 116-128. Pi‐Sunyer, F. X. (2002). The obesity epidemic: pathophysiology and consequences of obesity. Obesity Research, 10(S12), 97S-104S. Reichert, A. R. (2015). Obesity, weight loss, and employment prospects: evidence from a randomized trial. Journal of Human Resources, 50(3), 759-810. Renna, F., & Thakur, N. (2010). Direct and indirect effects of obesity on US labor market outcomes of older working age adults. Social Science & Medicine, 71(2), 405-413. Roehling, M. V., Roehling, P. V., & Pichler, S. (2007). The relationship between body weight and perceived weight-related employment discrimination: The role of sex and race. Journal of Vocational Behavior, 71(2), 300-318. Sabia, J. J., & Rees, D. I. (2012). Body weight and wages: Evidence from Add Health. Economics & Human Biology, 10(1), 14-19. Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT Press. Wright, E. J., & Whitehead, T. L. (1987). Perceptions of body size and obesity: a selected review of the literature. Journal of Community Health, 12, 117-129. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信