§ Browsing ETD Metadata
System No. U0002-3009201513311600
Title (in Chinese) 逆熱虹吸迴路之熱傳與壓降研究
Title (in English) Heat transfer and Pressure drop in a Reverse Thermosyphon Loop
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 103
Semester 2
PublicationYear 104
Author's name (in Chinese) 林碩彥
Author's name(in English) Shuo-Yen Lin
Student ID 602370669
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2015-07-15
Pagination 41page
Committee Member advisor - 康尚文
co-chair - 蔡孟昌
co-chair - 陳育堂
Keyword (inChinese) 逆流熱虹吸迴路
Keyword (in English) Reverse thermosyphon loop
Autonomous downward heat transfer
Heat transfer
Pressure drop
Other Keywords
Abstract (in Chinese)
Abstract (in English)
The conventional thermosyphon in a closed system, also referred as a “bottom-heat-type” thermosyphon, depends on the natural upward movement of vapor steam, hot fluid and the downward movement of cold liquids. Nevertheless, the reverse thermosyphon loop (RTL) could not only transfer heat from a heat source near the top to a heat sink at the bottom but also transfer heat from bottom to top as a conventional thermosyphon. The self-acting downward heat transfer devices are very useful for solar heating system, ground source heat pump (GSHP), and waste heat recovery.
The experiment is expected to explore the issue of different input power, tilt angle and change the downward heat transfer pipe diameters. Discussion the heat transfer and pressure drop of the reverse thermosyphon loop.
Other Abstract
Table of Content (with Page Number)
中文摘要	I
英文摘要	II
目錄	III
圖目錄	V
表目錄	VII
第一章 緒論	1
1.1 研究背景	1
1.2 文獻回顧	1
1.2.1 熱虹吸管(Thermosyphon)	1
1.2.2 逆流熱虹吸迴路介紹	8
第二章 理論簡介	11
2.1 熱虹吸管簡介	11
2.2 虹吸熱管類型	11
2.3 性能分析理論	13
2.4 逆熱虹吸管原理簡介	14
第三章 實驗設計與方法	15
3.1 逆熱虹吸迴路設計及製作	17
3.1.1 設計及工作液體選擇	17
3.1.2 物質沸點與壓力關係	18
3.1.3 填充率	19
3.2 實驗步驟	19
3.3 實驗儀器	20
第四章 實驗結果與討論	24
4.1 長管實驗	24
4.1.1 燒乾測試	24
4.1.2 逐步加大瓦數測試	25
4.1.3 裝置左傾45度	26
4.2 短管實驗	28
4.2.1 裝置直立	29
4.2.2 裝置左傾30度	30
4.2.3 裝置左傾60度	32
4.2.4 裝置反轉90度	34
4.3 更改管路設計	35
4.3.1 燒乾測試	36
4.3.2 加大瓦數並增加充填量	37
4.4 結論與建議	38
參考文獻	39
圖1.1 熱虹吸管示意圖(工作流體為R-134a,容器材料為銅)	2
圖1.2 恆溫槽與蒸發端溫度差異	3
圖1.3 蒸發端與冷凝端溫度差對整體熱傳係數之影響	3
圖1.4 直立式環形封閉虹吸熱管示意圖	4
圖1.5 二相流迴路式虹吸熱管設計圖	5
圖1.6 二相流迴路式虹吸熱管效能圖	6
圖1.7 小型迴路熱虹吸管結構	6
圖1.8 毛細燒結結構示意圖	7
圖1.9 加熱功率100W時不同表面之蒸發熱阻	7
圖1.10 四種外加機械泵提升冷凝向下傳熱辦法	9
圖1.11藉液體相變化達到向下傳熱辦法	9
圖1.12 增加容器槽之逆熱虹吸管	10
圖1.13 增設浮閥、止回閥之逆熱虹吸管	10
圖2.1 小型迴路熱虹吸管結構	11
圖2.2 單管虹吸熱管示意圖	12
圖2.3 迴路式平行熱虹吸熱管示意圖	12
圖2.4 迴路式虹吸熱管示意圖	13
圖2.5 逆熱虹吸管示意圖	15
圖3.1 裝置之L1、L2表示圖	16
圖3.2 研究流程示意圖	17
圖3.3 設計尺寸及運作模擬圖	18
圖3.4 數據擷取器	21
圖3.5 真空幫浦	21
圖3.6 真空計	22
圖3.7 電源供應器 Chroma 62024P-80-60	22
圖3.8 恆溫水槽	23
圖3.9 流量計	23
圖4.1 熱電偶線分布示意圖	24
圖4.2 60W溫度時間圖	25
圖4.3 熱電偶線分布示意圖	27
圖4.4 長管左傾45度溫度時間圖	28
圖4.5 熱電偶線分布示意圖	29
圖4.6 短管直立溫度時間圖	30
圖4.7 5W至25W的負壓力計讀數	31
圖4.8 25W至55W的壓力計讀數	31
圖4.9 短管左傾30度溫度時間圖	32
圖4.10 5W至20W的負壓力計讀數	33
圖4.11 20W至40W的壓力計讀數	33
圖4.12 短管左傾60度溫度時間圖	34
圖4.13 反轉90度並改變止迴閥方向示意圖	35
圖4.14 短管反轉90度溫度時間圖	35
圖4.15 熱電偶線示意圖	36
圖4.16 30W溫度時間圖	37
圖4.17 46W溫度時間圖	37

表1.1 流體與金屬材質配合表	4
表1.2 蒸發端沸騰溫度與熱通量關係	5
表4.1 60W正壓計讀數	25
表4.2 10W Chnnel1讀數	26
表4.4 20W Chnnel1讀數	26
表4.3 15W Chnnel1讀數	26
表4.5 25W Chnnel1讀數	26
表4.6 30W Chnnel1讀數	26
表4.7 正負壓力計讀數	27
[1].	E. Schmidt, in: Proc. Instn. Mech. Engrs., Conf. ASME, London, (1951), pp. 361-363.
[2].	B. S. Larkin, “An experimental study of the two-phase thermosyphon tube”, 70-CSME-6(EIC-71-MECH 8) 14 (B-6).
[3].	M. Shiraishi, K. Kikuchi, T. Yamanishi, “Investigation of heat transfer characteristics of a two-phase closed thermosyphon”, Heat Recovery System & CHP, 1, 1981, pp.287-297.
[4].	Y. Lee, U. Mital, “A two-phase closed thermosyphon”, International Journal of Heat Mass Transfer, 15, 1972, pp.1695-1770.
[5].	Y. aminaga, N. O, Ito, “Transient behavior of a thermosyphon heat pipe under stepwise temperature and heat load changes”, in: Proceedings of 7th International Heat Pipe Conference, London, 1981.
[6].	I. Sauciuc, A. Akbarzadeh, P. Johnson, “Characteristics of two phase closed thermosyphon for mediua temperature heat recovery applications”, Heat Recovery Systems & CHP, 14 (7), 1995, pp.631-640.
[7].	A. Faghri, M. Chen, M. Morgan, “Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons”, Transactions of ASME Journal of Heat Mass Transfer, 111 (3), 1989, pp.611-618.
[8].	F. A. Studer, T. W. McDonald, “Experimental study of a two-phase thermosyphon loop heat exchanger”, Transactions of ASHRAE, 92 (2), 1986, pp.486-493.
[9].	T. Wadowski, A. Akbarzadeh, P. Johnson, “Hysteresis in thermosyphon based heat exchangers and introduction of a novel triggering system for low-temperature difference heat-recovery applications”, Heat Recovery Systems & CHP, 11 (6), 1992, pp.523-531.
[10].	K. S. Ong, Md. Haider-E-Alahi, “Performance of a R-134a-filled thermosyphon”, Applied Thermal Engineering, 23, 2003, pp.2373-2381.
[11].	NASA Goddard Space Flight Center, “Ammonia-Charged Aluminum Heat Pipes with Extruded Wick,” Preferred Reliability Practices, Issue PD-ED-1209, pp. 1-7, 1998.
[12].	T. F. Lin, W. T. Lin, Y. L. Tsay, J. C. Wu, and R.J. Shyu, “Experimental Investigation of Geyser Boiling in an Annular Two-Phase Closed Thermosyphon”, International Journal of Heat and Mass transfer, Vol. 38, Issue 2, 1995, pp. 295-307.
[13].	J. R. Hartenstine, R. W. Bonner III, J. R. Montgomery and T. Semenic, “Loop thermosyphon design for cooling of large area, high heat flux sources”, 2007 Proceedings of the ASME InterPack Conference, IPACK 2007, Vol. 1, pp. 715-722.
[14].	S. W. Kang, M. C. Tsai, C. S. Hsieh, and J. Y. Chen, “Thermal Performance of a Loop Thermosyphon,” Tamkang Journal of Science and Engineering. 2009, 13(4), 281-288.
[15].	T.-E. Tsai, H.-H. Wu, C.-C. Chang and S.-L. Chen, “Two-phase closed thermosyphon vapor-chamber system for electronic cooling”, International Communications in Heat and Mass Transfer, Vol. 37, Issue 5, May 2010, pp. 484-489.
[16].	S. Filippeschi, On periodic two-phase thermosyphons operating against gravity, International journal of Thermal Sciences, Vol 45, 2006, pp. 124-137.
[17].	Y. Dobriansky, Y. G. Yohanis, “Cyclical Reverse Thermosiphon”, Archives of thermodynamics, Vol. 31, No. 1, 2010, pp. 3-32.
[18].	Y. Dobriansky, Concepts of Self-acting Circulation Loops for Downward Heat Transfer (Reverse Thermosiphons), Energy conversion and management, Vol. 52, 2011, pp.414-425.
[19].	Roberts CC. A review of heat pipe liquid delivery concepts. In: Proceedings of advances in heat pipe technology conference. London: Pergamon Press, Oxford; 1982. p. 693–702 [J Heat Recov Syst 1981; 1(4): 261–6).
[20].	De Beni G. Device for passive heat transport and integrated solar collector incorporating same. Euro patent 0 046 043, 31.07.81; US patent 4 467 862; UK patent 2 081 435; JP patent 57 112 658.
Terms of Use
Within Campus
I request to embargo my thesis/dissertation for 2 year(s) right after the date I submit my Authorization Approval Form.
Duration for delaying release from 2 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Duration for delaying release from 2 years.

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email