§ Browsing ETD Metadata
System No. U0002-3007201414480600
Title (in Chinese) 仿生微型蜂鳥機構之靜態平衡
Title (in English) Static Balancing of a Hummingbird-like Micro-aviation-vehicle
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 102
Semester 2
PublicationYear 103
Author's name (in Chinese) 張育晨
Author's name(in English) Yu-Chen Jhang
Student ID 601370298
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2014-07-09
Pagination 79page
Committee Member advisor - Chao-Hwa Liu
co-chair - Chao-Hwa Liu
co-chair - 陳正光
co-chair - 王銀添
Keyword (inChinese) 微型飛行器
Keyword (in English) Micro-aviation-vehicle
static balance
Stephenson III six-bar Mechanism
Other Keywords
Abstract (in Chinese)
Abstract (in English)
Static balancing of a specific MAV is performed in this thesis. A Stephenson III six-bar mechanism is first dealt with, since it is the main part of the MAV. Conditions for static balancing of this mechanism are derived by keeping the total mass center stays at the same position. Balancing conditions for the whole MAV is derived using the same method. These conditions are checked by numerical examples. A simplified version of the MAV consists of three slider-crank mechanisms, hence static balancing of a single slider crank mechanism is also performed. Finally, conditions for static balancing of the whole simplified MAV are derived and verified numerically in an example.
Other Abstract
Table of Content (with Page Number)

中文摘要	I
英文摘要	II
目錄	III
圖目錄	V
第1章	緒論	1
1-1	研究背景及動機	1
1-2	仿生蜂鳥微型飛行器結構	1
1-3	文獻回顧	2
第2章	史蒂芬生三型六連桿之靜態平衡	4
2-1	史蒂芬生三型六連桿之平衡條件	4
2-2	六連桿之接頭反作用力分析	8
2-3	例題	10
2-4	平衡結果	12
第3章	仿生蜂鳥機構之靜態平衡	13
3-1	仿生蜂鳥機構之靜態平衡條件	13
3-2	仿生蜂鳥機構之接頭反作用力分析	18
3-3	例題	21
3-4	平衡結果	24
第4章	滑件曲柄機構	25
4-1	滑件曲柄機構之靜態平衡條件	25
第5章	仿生蜂鳥之簡化機構	28
5-1	簡化機構之靜態平衡條件	28
5-2	仿生蜂鳥簡化機構之接頭反作用力分析	32
5-3	例題	34
5-4	平衡結果	37
第6章	結論	38
參考文獻	40
[1]	Berkof, R.S., and Lowen, G.G., “a new method for completely force balancing simple linkages ”, Journal of Engineering for Industry, 1969, pp.21-26.
[2]	Bagci, C., “Complete shaking force and shaking moment balancing of link mechanisms using balancing idler loops”, ASME (Paper), n80-DET-100, 1980.
[3]	Walker, M.J., and Haines, R.S., “Experimental study of the effects of counterweights on a six-bar chain”, Mechanism & Machine Theory, v 17, n 6, 1982, pp.335-360.
[4]	Huang, Z., and Liu, D.Y., “Shaking moment balancing of force-balanced six-bar linkages”, ASME (Paper), Design engineering Technical Conference , 1986.
[5]	Bagci, C., “Complete balancing of linkages using complete dynamical equivalents of floating links. CDEL method”, American Society of Mechanical Engineers, 22nd Biennial Mechanisms Conference, September 13,1992- September 16, 1992, v 47, 1992, pp.477-488.
[6]	Li, C-H., and Tso, P-L., “The study of dynamic balancing for high-speed presses”, JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, v 49, n 3, 2007, pp.657-662.
[7]	Lin, P-Y., Shieh, W-B., and Chen,D-Z., “Design of perfectly statically balanced one-dof planar linkages with revolute joints only”, Journal of Mechanical Design, v 131, n 5, 2009, pp. 0510041-0510049.
[8]	Zhu, X-R., Shen, H-P., Zhang, H-F., Li, J., Tao, S-B., and Yang, T-L., “Finite position method for complete balancing of shaking forces of mechanisms”, Proceeding 2009 IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design: E-Business, Creative Design, Manufacturing, 2009, pp 2333-2338.
[9]	Sun, J-W., and Chiou, S-T., “Global optimum balancing design of Stephenson-III six-bar linkages with installing disk counterweights”, Journal of the Chinese Society of Mechanical Engineers, v 32, n 1, 2011, pp.25-34.
[10]	Wilson, C.E., and Sadler, J.P., Kinematic and Dynamics of Machinery, Third Edition in SI Units, Prentice-Hall, 2006, pp.741-743
[11]	Norton, R.L., Kinematics and Dynamics of Machinery, 2nd ed. in SI units, McGraw-Hill, 2013, pp. 639-640.
[12]	陳建凱,仿生蜂鳥飛行機構運動及誤差分析,淡江大學,機械與機電工程學系碩士論文,2014。
[13]	王勝弘,仿生蜂鳥微型飛行器機構運動分析,淡江大學,機械與機電工程學系碩士論文,2013。
Terms of Use
Within Campus
I request to embargo my thesis/dissertation for 3 year(s) right after the date I submit my Authorization Approval Form.
Duration for delaying release from 3 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and contact me for receiving the payment.
Duration for delaying release from 3 years.

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email