§ 瀏覽學位論文書目資料
系統識別號 U0002-3006202517430200
DOI 10.6846/tku202500447
論文名稱(中文) 探討交通運輸產業實踐ESG之關鍵因素—以汽車客運業為例
論文名稱(英文) Exploring Key Factors for ESG Implementation in the Transporta-tion Industry: A Case Study of Bus Carriers.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 運輸管理學系運輸科學碩士班
系所名稱(英文) Department of Transportation Management
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 2
出版年 114
研究生(中文) 楊凡可
研究生(英文) Fan-ko Yang
學號 611660076
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-06-17
論文頁數 104頁
口試委員 指導教授 - 許超澤(hsuchao@mail.tku.edu.tw)
口試委員 - 劉建浩(jhliou@ntut.edu.tw)
口試委員 - 羅懷暐(huaiweil@yuntech.edu.tw)
關鍵字(中) ESG
汽車客運業
永續發展
修正式德爾菲法
Z-Numbers
Rough-DWGA
DEMATEL
ISM
關鍵字(英) ESG
Bus Carriers
Sustainable development
Modified Delphi Method
Z-Numbers
Rough-DWGA
DEMATEL
ISM
第三語言關鍵字
學科別分類
中文摘要
隨著全球永續發展意識抬頭,環境、社會與治理 (ESG) 已成為企業永續經營的重要指標。交通運輸產業作為溫室氣體排放的主要來源之一,被視為環境敏感產業,其ESG實踐對於達成2050淨零排放目標具有關鍵作用。汽車客運業作為都市地區公路運輸的核心角色,面臨政府政策要求、投資人期待與社會責任壓力,ESG轉型已成為必然趨勢。然而,過去研究多為無特定產業別之廣泛的討論,專門針對汽車客運業的系統性研究相對匱乏。有鑑於此,本研究旨在建構汽車客運業實踐ESG之關鍵因素評估架構,並探討因素間的相互影響關係與層級結構。
本研究採用混合研究方法,首先透過文獻回顧彙整汽車客運業實踐ESG之關鍵因素,建立包含環境、社會與治理三大構面的初擬評估架構。接著運用修正式德爾菲法,邀請汽車客運業相關領域之產、官、學專家進行因素篩選與定義修正,確立最終包含15項關鍵因素的評估架構:環境構面包含「導入低碳技術與綠色能源」、「碳排管理系統化」、「永續資源與節能減碳」、「廢棄物處理」、「綠化供應鏈」;社會構面包含「員工福利與職業安全」、「運輸安全及可靠性」、「社區參與與在地連結」、「社會溝通與透明化」、「ESG教育訓練與文化塑造」;治理構面包含「高階主管的承諾與支持」、「環境法規遵循」、「對ESG的監督與責任歸屬」、「ESG資訊揭露」、「利害關係人參與機制」。
為深入分析因素間的複雜關係,本研究進一步採用Rough-ZDWGA-DEMATEL-ISM混合分析方法。運用Z-number方法處理專家評估過程中的語意模糊與信心程度差異,透過Rough-DWGA方法整合不同專家的意見,以DEMATEL分析因素間的因果關係與影響強度,並運用ISM建立層級結構模型,確立改善優先順序。
研究結果顯示,DEMATEL分析將15項因素區分為原因類與結果類兩大群組。環境與社會構面的大部分因素屬於原因類,具有較強的影響力,會直接影響其他因素;治理構面的所有因素均屬於結果類,主要受其他因素影響,為最終表現指標。在中心度分析中,「高階主管的承諾與支持」、「環境法規遵循」、「ESG資訊揭露」為前三大重要因素;在原因度分析中,「員工福利與職業安全」與「社會溝通與透明化」為最具影響力的驅動因素。
ISM分析結果建立三層級結構模型:第一層級為最具影響力的優先實踐層級,包括「永續資源與節能減碳」與「社會溝通與透明化」;第二層級包含大部分環境與社會因素,為次要實踐層級;第三層級主要為治理因素,屬於基礎實踐層級。
本研究的主要發現包括:首先,「高階主管的承諾與支持」在汽車客運業中主要表現為對ESG實踐措施成效的反饋,而非傳統認知的單向驅動力,此發現反映汽車客運業「獨家營運」特性所帶來的產業特殊性。其次,環境與社會構面為ESG實踐的主要驅動力,治理構面則為受影響的結果指標。第三,「永續資源與節能減碳」與「社會溝通與透明化」為最關鍵的核心因素,應優先實踐。
基於研究結果,本研究提出三項主要建議: (1)量化ESG實踐措施的具體效益,促進高階主管對ESG推動的支持與資源投入; (2) 關注企業自身環保行動的落實,從辦公廳舍與場站的節能做起,建立鼓勵機制與通勤補助; (3) 建立ESG專區與永續意見箱,公開揭示ESG相關資訊與成果,並與乘客維持雙向且透明的溝通。
本研究首次針對汽車客運業建立系統性的ESG關鍵因素評估架構,並運用創新的混合分析方法揭示因素間的複雜關係,研究成果可供汽車客運業者制定ESG策略時參考,亦為相關政策制定者提供理論依據,有助於推動汽車客運業永續轉型,共同朝向2050淨零排放目標邁進。
英文摘要
With rising global sustainable development awareness, Environmental, Social, and Governance (ESG) has become crucial for corporate sustainability. As a major greenhouse gas emission source, the transportation industry's ESG practices are vital for achieving 2050 net-zero targets. The bus transportation industry faces pressures from government policies, investor expectations, and social responsibility, making ESG transformation inevitable. However, systematic research specifically targeting this industry remains insufficient. This study constructs a key factor assessment framework for ESG practices in bus transportation and explores factor interrelationships and hierarchical structure.
This study employs mixed methodology. Through literature review, key ESG factors were compiled to establish a preliminary framework encompassing environmental, social, and governance dimensions. Using modified Delphi method with industry, government, and academic experts, a final framework of 15 key factors was established: Environmental dimension includes low-carbon technology adoption, carbon emission management, sustainable resources, waste management, and green supply chain. Social dimension includes employee welfare, transportation safety, community engagement, social communication, and ESG education. Governance dimension includes senior management commitment, regulatory compliance, ESG supervision, information disclosure, and stakeholder engagement.
To analyze complex factor relationships, the Rough-ZDWGA-DEMATEL-ISM hybrid method was adopted. Z-number method handled semantic ambiguity, Rough-DWGA integrated expert opinions, DEMATEL analyzed causal relationships, and ISM established hierarchical structure for improvement priorities.
DEMATEL analysis categorized factors into cause and effect groups. Environmental and social factors mainly belong to the cause category with strong influence; governance factors belong to the effect category as performance indicators. Centrality analysis identified "senior management commit-ment," "regulatory compliance," and "information disclosure" as top factors; "employee welfare" and "social communication" were most influential drivers.
ISM established a three-level model: Level 1 (priority practices) includes "sustainable resources" and "social communication"; Level 2 (secondary practices) contains most environmental and social factors; Level 3 (foundational practices) consists mainly of governance factors.
Key findings include: First, "senior management commitment" primarily reflects feedback on ESG effectiveness rather than traditional driving force, showing industry-specific characteristics. Second, environmental and social dimensions drive ESG practices while governance represents outcome indicators. Third, "sustainable resources" and "social communication" are critical core factors requiring priority implementation.
The study proposes three recommendations: (1) Quantify ESG benefits to promote management support; (2) Implement environmental actions starting with energy conservation and incentive mecha-nisms; (3) Establish ESG communication channels and transparent information disclosure.
This study first establishes a systematic ESG framework for bus transportation using innovative hybrid analysis methods. Results provide strategic references for operators and theoretical basis for policymakers, promoting sustainable transformation toward 2050 net-zero targets.
第三語言摘要
論文目次
目錄
圖目錄	IX
表目錄	X
第一章 緒論	11
1.1 研究背景與動機	11
1.2 研究目的	15
1.3 研究範圍與研究限制	15
1.4 研究流程	16
第二章 文獻回顧	17
2.1 ESG的起源與發展	17
2.2 交通運輸產業的ESG特性	19
2.2.1 環境面 (E) 特性	19
2.2.2 社會面 (S) 特性	20
2.2.3 治理面 (G) 特性	22
2.3 汽車客運業實踐ESG之相關研究	23
2.3.1 汽車客運業的產業特性	23
2.3.2 研究方法比較	25
2.3.3 關鍵成功因素篩選	27
2.4 德爾菲法	31
2.4.1 德爾菲法的發展與起源	31
2.4.2 修正式德爾菲法	31
2.5 多準則決策方法	32
2.5.1 多準則決策方法基本概念	32
2.5.2 Z-numbers	33
2.5.3 Rough-DWGA	34
2.5.4 決策實驗室分析法 (DEMATEL)	35
2.5.5 詮釋結構模型 (ISM)	36
2.6 小結	36
第三章 研究方法	38
3.1 研究架構	38
3.2 修正式德爾菲法分析程序	38
3.3 Z-number分析程序	39
3.4 Rough-DWGA分析程序	40
3.5 DEMATEL分析程序	41
3.6 ISM分析程序	41
第四章 實證分析	42
4.1 修正式德爾菲法之關鍵因素篩選	42
4.2 Rough-ZDWGA分析	48
4.3 DEMATEL分析	60
4.4 ISM分析	67
4.5 小結	70
第五章 結論與建議	73
5.1 結論與建議	73
5.2 後續研究	76
參考文獻	78
附錄	91
附錄一	91
附錄二	97
圖目錄
圖1.1本研究流程圖	16
圖2.1本研究初擬評估架構圖	30
圖4.1本研究之評估架構圖	47
圖4.2影響關係座標圖	65
圖4.3環境構面影響關係座標圖	65
圖4.4社會構面影響關係座標圖	66
圖4.5治理構面影響關係座標圖	66
圖4.6層級結構圖	70
 
表目錄
表4-1修正式德爾菲問卷填答之專家學者背景簡介	42
表4-2文獻回顧彙整之汽車客運業實踐ESG之關鍵因素與定義	43
表4-3修正式德爾菲法修改後之汽車客運業實踐ESG之關鍵因素與定義	45
表4-4本研究影響程度及信心程度語意變數表	48
表4-5 Rough-ZDWGA-DEMATEL-ISM問卷填答之專家學者背景簡介	48
表4-6專家1之成對比較評估結果	49
表4-7專家1之初始影響矩陣	51
表4-8 7位專家之初始影響矩陣總表	51
表4-9初始直接影響矩陣 (D) 	59
表4-10標準化矩陣 (X) 	60
表4-11完全影響矩陣 (T) 	61
表4-12中心度與原因度分析結果	61
表4-13中心度與原因度排序結果彙整表	63
表4-14中心度分類表	64
表4-15原因度分類表	64
表4-16鄰接矩陣 (A) 	67
表4-17第一次迭代	69
表4-18第二次迭代	69
表4-19第三次迭代	70
參考文獻
<中文文獻>
1.	交通部. (2022) . 111年民眾日常使用運具狀況調查.
2.	呂妍儀. (2023) . 企業永續發展步驟之實務探討: 以紡織貿易商為例 [國立台灣師範大學]. 
3.	王茜穎. (2022) . SDGs、ESG有什麼不同?兩者如何對照?一張表帶你看懂. 
4.	經濟部能源署. (2024) . 112年燃料燃燒之二氧化碳排放量統計與分析. 
5.	臺北市政府環境保護局. (2024) . 臺北市112年空氣品質監測年報. 
6.	賴慧如. (2024) . ESG的關鍵密碼 探討ESG信念透過品牌信任及知覺價值對購買意願之影響-以統一超商為例 [國立中山大學]. 
7.	郭鎮瑋. (2023) . 企業導入ESG的關鍵成功因素 [東吳大學]. 

<英文文獻>
1.	Akram, M., Ilyas, F., & Garg, H. (2021) . ELECTRE-II method for group deci-sion-making in Pythagorean fuzzy environment. Applied Intelligence, 51 (12) , 8701–8719. https://doi.org/10.1007/s10489-021-02200-0
2.	Albuquerque, R., Koskinen, Y., & Zhang, C. (2019) . Corporate Social Responsi-bility and Firm Risk: Theory and Empirical Evidence. Management Science, 65 (10) , 4451–4469. https://doi.org/10.1287/mnsc.2018.3043
3.	Aliev, R. A., Alizadeh, A. V., Huseynov, O. H., & Jabbarova, K. I. (2015) . Z-Number-Based Linear Programming: Z-number-Based Linear Programming. International Journal of Intelligent Systems, 30 (5) ,563–589. 
https://doi.org/10.1002/int.21709
4.	Aliev, R. A., Huseynov, O. H., & Serdaroglu, R. (2016) . Ranking of Z-Numbers and Its Application in Decision Making. International Journal of Information Technology & Decision Making, 15 (06) , 1503–1519. https://doi.org/10.1142/S0219622016500310
5.	Bakar, A. S. A., & Gegov, A. (2015) . Multi-Layer Decision Methodology For Ranking Z-Numbers. International Journal of Computational Intelligence Systems, 8 (2) , 395. https://doi.org/10.1080/18756891.2015.1017371
6.	Banerjee, S. B., Iyer, E. S., & Kashyap, R. K. (2003) . Corporate Environmental-ism: Antecedents and Influence of Industry Type. Journal of Marketing, 67 (2) , 106–122. https://doi.org/10.1509/jmkg.67.2.106.18604
7.	Belton, V., & Stewart, T. (2012) . Multiple Criteria Decision Analysis: An Inte-grated Approach. Springer Science & Business Media.
8.	Bowen, F., Newenham-Kahindi, A., & Herremans, I. (2010) . When Suits Meet Roots: The Antecedents and Consequences of Community Engagement Strategy. Journal of Business Ethics, 95 (2) , 297–318. https://doi.org/10.1007/s10551-009-0360-1
9.	Bowen, H. R. (2013) . Social Responsibilities of the Businessman. University of Iowa Press. JSTOR. https://doi.org/10.2307/j.ctt20q1w8f
10.	Buchanan, B., Cao, C. X., & Chen, C. (2018) . Corporate social responsibility, firm value, and influential institutional ownership. Journal of Corporate Finance, 52, 73–95. https://doi.org/10.1016/j.jcorpfin.2018.07.004
11.	Buchholz, R. A., & Rosenthal, S. B. (2005) . Toward a Contemporary Conceptual Framework for Stakeholder Theory. Journal of Business Ethics, 58 (1–3) , 137–148. https://doi.org/10.1007/s10551-005-1393-8
12.	Campbell, D., Craven, B., & Shrives, P. (2003) . Voluntary social reporting in three FTSE sectors: A comment on perception and legitimacy. Accounting, Auditing & Accountability Journal, 16 (4) , 558–581. 
https://doi.org/10.1108/09513570310492308
13.	Carroll, A. B. (1999) . Corporate Social Responsibility: Evolution of a Definitional Construct. Business & Society, 38 (3) , 268–295. 
https://doi.org/10.1177/000765039903800303
14.	Chava, S. (2014) . Environmental Externalities and Cost of Capital. Management Science, 60 (9) , 2223–2247. https://doi.org/10.1287/mnsc.2013.1863
15.	Cheng, B., Ioannou, I., & Serafeim, G. (2014) . Corporate social responsibility and access to finance. Strategic Management Journal, 35 (1) , 1–23. 
https://doi.org/10.1002/smj.2131
16.	Connor, T. (2001). Still waiting for Nike to do it: Nike's labor practices in the three years since CEO Phil Knight's speech to the National Press Club. Global Ex-change, San Francisco, California.
17.	Constant, E. W. (1988) . Reviewed Work: From the American System to Mass Production, 1800-1932: The Development of Manufacturing Technology in the United States by David A. Hounshell. Journal of Social History, 21 (4) , 793–795. JSTOR. https://www.jstor.org/stable/3788015
18.	Creutzig, F., Niamir, L., Bai, X., Callaghan, M., Cullen, J., Díaz-José, J., Figueroa, M., Grubler, A., Lamb, W. F., Leip, A., Masanet, E., Mata, É., Mattauch, L., Minx, J. C., Mirasgedis, S., Mulugetta, Y., Nugroho, S. B., Pathak, M., Perkins, P., … Ürge-Vorsatz, D. (2022) . Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 12 (1) , 36–46. https://doi.org/10.1038/s41558-021-01219-y
19.	Cui, J., Jo, H., & Li, Y. (2015) . Corporate Social Responsibility and Insider Trading. Journal of Business Ethics, 130 (4) , 869–887. 
https://doi.org/10.1007/s10551-014-2113-z
20.	Custer, R. L., Scarcella, J. A., & Stewart, B. R. (1999) . The Modified Delphi Technique—A Rotational Modification. Journal of Career and Technical Educa-tion, 15 (2) . https://doi.org/10.21061/jcte.v15i2.702
21.	Dalkey, N. C. (1969) . The Delphi method: An experimental study of group opin-ion. RAND Corporation. 
https://www.rand.org/pubs/research_memoranda/RM5888.html
22.	Dalkey, N., & Helmer, O. (1963) . An Experimental Application of the Delphi Method to the Use of Experts. Management Science, 9 (3) , 458–467. JSTOR. https://www.jstor.org/stable/2627117
23.	Dhaliwal, D. S., Li, O. Z., Tsang, A., & Yang, Y. G. (2011) . Voluntary Nonfinan-cial Disclosure and the Cost of Equity Capital: The Initiation of Corporate Social Responsibility Reporting. The Accounting Review, 86 (1) , 59–100. https://doi.org/10.2308/accr.00000005
24.	Dombi, J. (1982) . A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems, 8 (2) , 149–163. https://doi.org/10.1016/0165-0114(82)90005-7
25.	Dunphy, D. C., Griffiths, A., Benn, S., & Dunphy, D. C. (2007) . Organizational change for corporate sustainability: A guide for leaders and change agents of the future (2. ed) . Routledge.
26.	Eccles, R. G., Ioannou, I., & Serafeim, G. (2014) . The Impact of Corporate Sus-tainability on Organizational Processes and Performance. Management Science, 60 (11) , 2835–2857. https://doi.org/10.1287/mnsc.2014.1984
27.	Edmans, A. (2011) . Does the stock market fully value intangibles? Employee sat-isfaction and equity prices. Journal of Financial Economics, 101 (3) , 621–640. https://doi.org/10.1016/j.jfineco.2011.03.021
28.	European Economic Area. (2022) . Decarbonising road transport: The role of ve-hicles, fuels and transport demand. Publications Office. 
https://data.europa.eu/doi/10.2800/68902
29.	El Ghoul, S., Guedhami, O., Kwok, C. C. Y., & Mishra, D. R. (2011) . Does corporate social responsibility affect the cost of capital? Journal of Banking & Fi-nance, 35 (9) , 2388–2406. https://doi.org/10.1016/j.jbankfin.2011.02.007
30.	Eubank, B. H., Mohtadi, N. G., Lafave, M. R., Wiley, J. P., Bois, A. J., Boorman, R. S., & Sheps, D. M. (2016) . Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pa-thology. BMC Medical Research Methodology, 16 (1) , 56. 
https://doi.org/10.1186/s12874-016-0165-8
31.	European Agency for Safety and Health at Work. (2011) . OSH in figures: Occu-pational safety and health in the transport sector: an overview. Publications Office. https://data.europa.eu/doi/10.2802/2218
32.	Fair Labor Association. (2012) . 2012 Annual Report. Fair Labor Association. https://www.fairlabor.org/wp-content/uploads/2022/01/2012_fla_apr_0.pdf
33.	Finnsgård, C., Kalantari, J., Raza, Z., Roso, V., & Woxenius, J. (2018) . Swedish shippers’ strategies for coping with slow-steaming in deep sea container shipping. Journal of Shipping and Trade, 3 (1) , 8. 
https://doi.org/10.1186/s41072-018-0033-2
34.	Flammer, C. (2015) . Does Corporate Social Responsibility Lead to Superior Fi-nancial Performance? A Regression Discontinuity Approach. Management Science, 61 (11) , 2549–2568. https://doi.org/10.1287/mnsc.2014.2038
35.	Friede, G., Busch, T., & Bassen, A. (2015) . ESG and financial performance: Ag-gregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5 (4) , 210–233. 
https://doi.org/10.1080/20430795.2015.1118917
36.	Garcia, A. S., & Orsato, R. J. (2020) . Testing the institutional difference hypothe-sis: A study about environmental, social, governance, and financial performance. Business Strategy and the Environment, 29 (8) , 3261–3272. 
https://doi.org/10.1002/bse.2570
37.	Gereffi, G., Regini, M., & Sabel, C. F. (2014) . On Richard M. Locke, The Prom-ise and Limits of Private Power: Promoting Labor Standards in a Global Economy, New York, Cambridge University Press, 2013. Socio-Economic Review, 12 (1) , 219–235. https://doi.org/10.1093/ser/mwt023
38.	Gillan, S. L., Koch, A., & Starks, L. T. (2021) . Firms and social responsibility: A review of ESG and CSR research in corporate finance. Journal of Corporate Fi-nance, 66, 101889. https://doi.org/10.1016/j.jcorpfin.2021.101889
39.	Govindan, K., Madan Shankar, K., & Kannan, D. (2016) . Application of fuzzy analytic network process for barrier evaluation in automotive parts remanufactur-ing towards cleaner production – a study in an Indian scenario. Journal of Cleaner Production, 114, 199–213. https://doi.org/10.1016/j.jclepro.2015.06.092
40.	Graves, L. M., Sarkis, J., & Gold, N. (2019) . Employee proenvironmental be-havior in Russia: The roles of top management commitment, managerial leadership, and employee motives. Resources, Conservation and Recycling, 140, 54–64. 
https://doi.org/10.1016/j.resconrec.2018.09.007
41.	Graves, L. M., Sarkis, J., & Zhu, Q. (2013) . How transformational leadership and employee motivation combine to predict employee proenvironmental behaviors in China. Journal of Environmental Psychology, 35, 81–91. 
https://doi.org/10.1016/j.jenvp.2013.05.002
42.	Hahn, R., & Lülfs, R. (2014) . Legitimizing Negative Aspects in GRI-Oriented Sustainability Reporting: A Qualitative Analysis of Corporate Disclosure Strategies. Journal of Business Ethics, 123 (3) , 401–420. 
https://doi.org/10.1007/s10551-013-1801-4
43.	Hasan, M. K., Lei, X., Hlali, A., & Bian, Z. (2024) . Modelling capability factors of logistics industry based on ISM-MICMAC. Heliyon, 10 (22) , e40539.
 https://doi.org/10.1016/j.heliyon.2024.e40539
44.	Hasson, F., Keeney, S., & Mckenna, H. (2000) . Research guidelines for the Del-phi Survey Technique. Journal of Advanced Nursing, 32, 1008–1015. 
https://doi.org/10.1046/j.1365-2648.2000.t01-1-01567.x
45.	Hickman, R., Ashiru, O., & Banister, D. (2010) . Transport and climate change: Simulating the options for carbon reduction in London. Transport Policy, 17 (2) , 110–125. https://doi.org/10.1016/j.tranpol.2009.12.002
46.	Hong, H., Kubik, J. D., & Scheinkman, J. A. (2012) . Financial Constraints on Corporate Goodness (No. w18476) . National Bureau of Economic Research. http://www.nber.org/papers/w18476
47.	Horbach, J., Rammer, C., & Rennings, K. (2012) . Determinants of eco-innovations by type of environmental impact—The role of regulatory push/pull, technology push and market pull. Ecological Economics, 78, 112–122. 
https://doi.org/10.1016/j.ecolecon.2012.04.005
48.	Hsu, C.-H., Chen, S.-J., Huang, M.-Q., & Le, Q. (2024) . Industry 5.0 Drivers Analysis Using Grey-DEMATEL: A Logistics Case in Emerging Economies. Mathematics, 12 (22) , 3588. https://doi.org/10.3390/math12223588
49.	Hwang, C.-L., & Yoon, K. (2012) . Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Springer Science & Business Media.
50.	Inter-American Development Bank. (2019) . Corporate Governance: COVID-19 and the Board of Directors.
51.	International Civil Aviation Organization. (2024) . ICAO Safety Report 2024. https://www.icao.int/safety/Documents/ICAO_SR_2024.pdf
52.	International Energy Agency. (2021) . Net Zero by 2050—A Roadmap for the Global Energy Sector. https://www.iea.org/reports/net-zero-by-2050
53.	International Energy Agency. (2023) . CO2 Emissions in 2022. 
https://www.iea.org/reports/co2-emissions-in-2022
54.	International Labour Organization. (2025) . World employment and social outlook: Trends 2025 (1st ed.) . https://doi.org/10.54394/IZLN1673
55.	International Maritime Organization. (2020) . Fourth IMO GHG Study 2020 Full Report. https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fourth%20IMO%20GHG%20Study%202020%20-%20Full%20report%20and%20annexes.pdf
56.	Jiang, S., Shi, H., Lin, W., & Liu, H.-C. (2020) . A large group linguistic Z-DEMATEL approach for identifying key performance indicators in hospital performance management. Applied Soft Computing, 86, 105900. 
https://doi.org/10.1016/j.asoc.2019.105900
57.	Johnson, M. P., & Schaltegger, S. (2016) . Two Decades of Sustainability Man-agement Tools for SMEs: How Far Have We Come? Journal of Small Business Management, 54 (2) , 481–505. https://doi.org/10.1111/jsbm.12154
58.	JR East. (2022) . JR East Group Safety Plan 2023. 
https://www.jreast.co.jp/e/environment/pdf_2022/p033-047.pdf
59.	Kang, B., Wei, D., Li, Y., & Deng, Y. (2012a) . A Method of Converting Z-number to Classical Fuzzy Number. Journal of information &computational science, 9 (3) , 703-709. 
https://www.researchgate.net/publication/285766732_A_method_of_converting_Z-number_to_classical_fuzzy_number
60.	Kang, B., Wei, D., Li, Y., & Deng, Y. (2012b) . Decision making using Z-numbers under uncertain environment. Journal of Computational Information Systems, 8, 2807–2814. https://www.researchgate.net/publication/281608975
61.	Kaplan, R. S., & Norton, D. P. (1996) . The balanced scorecard: Translating strategy into action. Harvard business school press.
62.	Keshavarz-Ghorabaee, M. (2024) . Application of a Decision-making Approach Based on Factor Analysis and DEMATEL for Evaluating Challenges of Adopting Electric Vehicles. The Open Transportation Journal, 18 (1) , e26671212332468. https://doi.org/10.2174/0126671212332468240829052532
63.	Khalid, M. (2025) . Re: What is the difference between delphi method and modi-fied delphi method with examples?. ResearchGate. 
https://www.researchgate.net/post/What_is_the_difference_between_delphi_method_and_modified_delphi_method_with_examples/67ee94193e5f8059d904d9bc/citation/download.
64.	Khalili, S., Rantanen, E., Bogdanov, D., & Breyer, C. (2019) . Global Transporta-tion Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World. Energies, 12 (20) , 3870. 
https://doi.org/10.3390/en12203870
65.	Khan, A. A., Ashraf, S., Abdullah, S., Qiyas, M., Luo, J., & Khan, S. U. (2019) . Pythagorean Fuzzy Dombi Aggregation Operators and Their Application in Deci-sion Support System. Symmetry, 11 (3) , 383. 
https://doi.org/10.3390/sym11030383
66.	Khan, S., Khan, M., Khan, M. S. A., Abdullah, S., & Khan, F. (2023) . A Novel Approach Toward Q-Rung Orthopair Fuzzy Rough Dombi Aggregation Operators and Their Application to Decision-Making Problems. IEEE Access, 11, 35770–35783. https://doi.org/10.1109/ACCESS.2023.3264831
67.	Khodyakov, D. (2023) . Generating evidence using the Delphi method. RAND Corporation Commentary. 
68.	Koksalan, M., Wallenius, J., & Zionts, S. (2011) . Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific.
69.	KPMG IMPACT. (2020) . The Time Has Come: The KPMG Survey of Sustaina-bility Reporting 2020.
70.	Kumar, A., & Dixit, G. (2018) . An analysis of barriers affecting the implementa-tion of e-waste management practices in India: A novel ISM-DEMATEL approach. Sustainable Production and Consumption, 14, 36–52. https://doi.org/10.1016/j.spc.2018.01.002
71.	Kumar, S., Teichman, S., & Timpernagel, T. (2012) . A green supply chain is a re-quirement for profitability. International Journal of Production Research, 50 (5) , 1278–1296. https://doi.org/10.1080/00207543.2011.571924
72.	Laplume, A. O., Sonpar, K., & Litz, R. A. (2008) . Stakeholder Theory: Review-ing a Theory That Moves Us. Journal of management, 34 (6) , 1152-1189. 
https://doi.org/10.1177/01492063083243
73.	Li, Y., Zhang, Y., & Solangi, Y. A. (2023) . Assessing ESG Factors and Policies of Green Finance Investment Decisions for Sustainable Development in China Using the Fuzzy AHP and Fuzzy DEMATEL. Sustainability, 15 (21) , 15214. 
https://doi.org/10.3390/su152115214
74.	Liang, H., & Renneboog, L. (2017) . On the Foundations of Corporate Social Re-sponsibility. The Journal of Finance, 72 (2) , 853–910. 
https://doi.org/10.1111/jofi.12487
75.	Lin, C.-J., & Wu, W.-W. (2008) . A causal analytical method for group deci-sion-making under fuzzy environment. Expert Systems with Applications, 34 (1) , 205–213. https://doi.org/10.1016/j.eswa.2006.08.012
76.	Liou, J. J. H., Liu, P. Y. L., & Huang, S.-W. (2023) . Exploring the key barriers to ESG adoption in enterprises. Systems and Soft Computing, 5, 200066. 
https://doi.org/10.1016/j.sasc.2023.200066
77.	Litman, T. (2018) . Evaluating Transportation Equity Guidance For Incorporating Distributional Impacts in Transportation Planning. Victoria Transport Policy Insti-tute. http://ecoplan.org/wtpp/wt_index.htm
78.	Lozano, R. (2018) . Sustainable business models: Providing a more holistic per-spective. Business Strategy and the Environment, 27 (8) , 1159–1166. 
https://doi.org/10.1002/bse.2059
79.	Mahongo, S. (2013) . Investigating the effect of winds and storms on shoreline erosion along the coast of Tanzania. Journal of Shipping and Ocean Engineering, 3, 61–69. https://www.researchgate.net/publication/259865499
80.	Mandal, A., & Deshmukh, S. G. (1994) . Vendor Selection Using Interpretive Structural Modelling (ISM) . International Journal of Operations & Production Management, 14 (6) , 52–59. https://doi.org/10.1108/01443579410062086
81.	Marx, K. (1867) . Das Kapital: Kritik der politischen Ökonomie (Vol. 1) . O. Meissner.
82.	Morsing, M., & Schultz, M. (2006) . Corporate social responsibility communica-tion: Stakeholder information, response and involvement strategies. Business Eth-ics, 15 (4) . https://www.researchgate.net/publication/313090994_Corporate_social_responsibility_communication_stakeholder_information_response_and_involvement_strategies
83.	Nasa, P., Jain, R., & Juneja, D. (2021) . Delphi methodology in healthcare research: How to decide its appropriateness. World Journal of Methodology, 11 (4) , 116–129. https://doi.org/10.5662/wjm.v11.i4.116
84.	Organization for Economic Cooperation and Development. (2020) . Transport Bridging Divides. OECD. https://doi.org/10.1787/55ae1fd8-en
85.	Pamučar, D., Stević, Ž., & Sremac, S. (2018) . A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM) . Symmetry, 10 (9) , 393. https://doi.org/10.3390/sym10090393
86.	Parameswar, N., Hasan, Z., Shri, C., & Saini, N. (2024) . Exploring the barriers to ESG adoption using modified TISM approach. Kybernetes, 53 (12) , 5775–5800. https://doi.org/10.1108/K-05-2023-0888
87.	Parasuraman, A. P., Zeithaml, V., & Berry, L. (1988) . SERVQUAL A Multi-ple-item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64, 12–40. 
https://www.researchgate.net/publication/200827786_SERVQUAL_A_Multiple-item_Scale_for_Measuring_Consumer_Perceptions_of_Service_Quality
88.	Parmar, B. L., Freeman, R. E., & Harrison, J. S. (2010) . Stakeholder Theory: The State of the Art. The academy of management annals, 4 (1) , 403-445. 
https://scholarship.richmond.edu/management-faculty-publications/99
89.	Pedersen, L. H., Fitzgibbons, S., & Pomorski, L. (2021) . Responsible investing: The ESG-efficient frontier. Journal of Financial Economics, 142 (2) , 572–597. https://doi.org/10.1016/j.jfineco.2020.11.001
90.	Pham, T. N., Tran, P. P., Le, M.-H., Vo, H. N., Pham, C. D., & Nguyen, H.-D. (2022) . The Effects of ESG Combined Score on Business Performance of Enter-prises in the Transportation Industry. Sustainability, 14 (14) , 8354. 
https://doi.org/10.3390/su14148354
91.	Porter, M. E., & Linde, C. V. D. (1995) . Toward a New Conception of the Envi-ronment-Competitiveness Relationship. Journal of Economic Perspectives, 9 (4) , 97–118. https://doi.org/10.1257/jep.9.4.97
92.	Freeman, R. E. (2010) . Strategic Management: A Stakeholder Approach. Cam-bridge University Press. 
https://www.researchgate.net/publication/228320877_A_Stakeholder_Approach_to_Strategic_Management
93.	Raff, D. M. G., & Summers, L. H. (1987) . Did Henry Ford Pay Efficiency Wag-es? Journal of Labor Economics, 5 (4,) , S57–S86. 
http://www.jstor.org/stable/2534911 .
94.	Ramires, P. M. K., & Veselova, A. (2024) . Top management and employees’ commitment to sustainability as internal drivers of a company’s ESG performance. Journal of Infrastructure, Policy and Development, 8 (10) , 7009. 
https://doi.org/10.24294/jipd.v8i10.7009
95.	Ravi, V., & Shankar, R. (2005) . Analysis of interactions among the barriers of reverse logistics. Technological Forecasting and Social Change, 72 (8) , 1011–1029. https://doi.org/10.1016/j.techfore.2004.07.002
96.	Rowe, G., & Wright, G. (1999) . The Delphi technique as a forecasting tool: Is-sues and analysis. International Journal of Forecasting, 15 (4) , 353–375. 
https://doi.org/10.1016/S0169-2070(99)00018-7
97.	Saaty, T. L. (1980) . The analytic hierarchy process (AHP) . 41 (11) , 1073–1076. https://www.iasj.net/iasj/download/9c50d6dda6342d0f
98.	Sabaei, D., Erkoyuncu, J., & Roy, R. (2015) . A Review of Multi-criteria Decision Making Methods for Enhanced Maintenance Delivery. Procedia CIRP, 37, 30–35. https://doi.org/10.1016/j.procir.2015.08.086 
99.	Science Based Targets initiative. (2024) . Land Transport Science-Based Tar-get-Setting Guidance. 
https://files.sciencebasedtargets.org/production/files/Land-Transport-Guidance.pdf
100.	Shieh, J.-I., Wu, H.-H., & Huang, K.-K. (2010) . A DEMATEL method in identi-fying key success factors of hospital service quality. Knowledge-Based Systems, 23 (3) , 277–282. https://doi.org/10.1016/j.knosys.2010.01.013
101.	Singh, Shankar, R., Narain, R., & Agarwal, A. (2003) . An interpretive structural modeling of knowledge management in engineering industries. Journal of Ad-vances in Management Research, 1 (1) , 28–40. https://doi.org/10.1108/97279810380000356
102.	Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020) . Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS) . Com-puters & Industrial Engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231
103.	Talbot, D., & Boiral, O. (2018) . GHG Reporting and Impression Management: An Assessment of Sustainability Reports from the Energy Sector. Journal of Business Ethics, 147 (2) , 367–383. https://doi.org/10.1007/s10551-015-2979-4
104.	Talbot, D., Raineri, N., & Daou, A. (2021) . Implementation of sustainability management tools: The contribution of awareness, external pressures, and stake-holder consultation. Corporate Social Responsibility and Environmental Man-agement, 28 (1) , 71–81. https://doi.org/10.1002/csr.2033
105.	Thakkar, J. J. (2021) . Multi-Criteria Decision Making (Vol. 336) . Springer Sin-gapore. http://www.springer.com/series/13304
106.	U.S. Bureau of Labor Statistics. (2024) . National Census of Fatal Occupational Injuries in 2023. https://www.bls.gov/news.release/pdf/cfoi.pdf
107.	United Nations Conference on Trade and Development. (2022) . Trade And De-velopment Report: Development prospects in a fractured world. United Nations. https://unctad.org/system/files/official-document/tdr2022_en.pdf
108.	United Nations Environment Programme. (2021) . Annual Report 2021. https://wedocs.unep.org/bitstream/handle/20.500.11822/37946/UNEP_AR2021.pdf
109.	United Nations. (2004) . Who care wins. https://documents1.worldbank.org/curated/en/280911488968799581/pdf/113237-WP-WhoCaresWins-2004.pdf
110.	Wang, M., Zhang, Y., Tian, Y., & Zhang, K. (2023) . An integrated rough-fuzzy WINGS-ISM method with an application in ASSCM. Expert Systems with Appli-cations, 212, 118843. https://doi.org/10.1016/j.eswa.2022.118843
111.	Woodcock, T., Adeleke, Y., Goeschel, C., Pronovost, P., & Dixon-Woods, M. (2020) . A modified Delphi study to identify the features of high quality measure-ment plans for healthcare improvement projects. BMC Medical Research Method-ology, 20 (1) , 8. https://doi.org/10.1186/s12874-019-0886-6
112.	World Commission on Environment and Development (1987) . Our common fu-ture. Oxford University Press. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
113.	World Health Organization. (2010) . Healthy workplaces: A model for action: for employers, workers, policy-makers and practitioners. https://www.who.int/publications/i/item/9789241599313
114.	World Health Organization. (2021) . WHO global air quality guidelines: Particulate matter (PM2.5 and PM10) , ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO European Centre for Environment and Health. 
https://www.who.int/publications/i/item/9789240034228
115.	World Health Organization. (2023) . Global Status Report on Road Safety 2023. World Health Organization. https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
116.	Wu, W.-W., & Lee, Y.-T. (2007) . Developing global managers’ competencies us-ing the fuzzy DEMATEL method. Expert Systems with Applications, 32 (2) , 499–507. https://doi.org/10.1016/j.eswa.2005.12.005
117.	Zadeh, L. A. (2011) . A Note on Z-numbers. Information Sciences, 181 (14) , 2923–2932. https://doi.org/10.1016/j.ins.2011.02.022
118.	Zavadskas, E. K., Turskis ,Zenonas, & and Kildienė, S. (2014) . State of art sur-veys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20 (1) , 165–179. 
https://doi.org/10.3846/20294913.2014.892037
119.	Zhu, Q., Sarkis, J., & Geng, Y. (2005) . Green supply chain management in China: Pressures, practices and performance. International Journal of Operations & Production Management, 25 (5) , 449–468. 
https://doi.org/10.1108/01443570510593148
120.	Zhu, Q., Sarkis, J., & Lai, K. (2008) . Confirmation of a measurement model for green supply chain management practices implementation. International Journal of Production Economics, 111 (2) , 261–273. 
https://doi.org/10.1016/j.ijpe.2006.11.029
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文延後至2030-07-07公開,延後電子全文
校外
同意授權予資料庫廠商
校外電子論文延後至2030-07-07公開,延後電子全文

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信