系統識別號 | U0002-2908202411020400 |
---|---|
DOI | 10.6846/tku202400731 |
論文名稱(中文) | 可重構智慧反射面板協作及基於非正交多址無線供電通訊網路之最小能源消耗研究 |
論文名稱(英文) | Energy Consumption Minimization for RIS-Enhanced and NOMA-based WPCNs |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 鄭昀軒 |
研究生(英文) | Yun-Hsuan Cheng |
學號 | 611410050 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-08 |
論文頁數 | 45頁 |
口試委員 |
指導教授
-
石貴平(kpshih@gms.tku.edu.tw)
口試委員 - 陳彥達 口試委員 - 王三元 |
關鍵字(中) |
無線供電通訊網路 NOMA RIS 功率分配 時間分配 電量消耗 |
關鍵字(英) |
Wireless Powered Communication Networks (WPCNs) Non-Orthogonal Multiple Access (NOMA) Reconfigurable Intelligent Surface (RIS) Power Distribution Time allocation Energy consumption |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文主要是針對在可重構智慧反射面板協作的無線供電通訊網路當中,使用非正交多址的方式進行傳輸,並且提出了不同的策略以及時間規劃使得網路的總體電能消耗最小化。由於無線供電通訊網路中,使用非正交多址傳輸的方式與以往的TDMA方式不同,因此我們對其傳輸的無線裝置進行分組與時間序的排列,並且對於每個組別的無線裝置考慮不同情況配對的功率分配,以實現非正交多址的傳輸,再使用序列最小二乘規劃(Sequential Least Squares Quadratic Programming)找出最佳的功率分配並求出最小的充能時間。在後半段也提出了一個創新的方案與分組策略,可以用低於SLSQP的運算速度,並求出不亞於SLSQP效能的次佳解。 |
英文摘要 |
This paper focuses on a wireless powered communication network (WPCN) assisted by reconfigurable intelligent surfaces (RIS), where non-orthogonal multiple access (NOMA) is employed for transmission. Various strategies and time scheduling methods are proposed to minimize the overall energy consumption of the network. Unlike the traditional TDMA approach, the use of NOMA in a WPCN requires grouping and time sequence arrangement for the transmitting wireless devices. Different power allocation strategies are considered for each group of devices to achieve NOMA transmission. Sequential Least Squares Quadratic Programming (SLSQP) is then applied to find the optimal power allocation and the minimum charging time. In the latter part of the paper, an innovative scheme and grouping strategy are also proposed, which can achieve a near-optimal solution with lower computational complexity than SLSQP, while maintaining comparable performance. |
第三語言摘要 | |
論文目次 |
目錄 第1章 Introduction 1 第2章 Preliminaries 10 2.1 Network Model 10 2.2 Constraints 13 2.3 Time Allocation 15 第3章 NOMA Transmition ECm 17 3.1 Problem Formulation 17 3.2 SLSQP for ECm 27 第4章 Heuristic Method 32 4.1 Challenges of SLSQP in NOMA Grouping and Power Allocation 32 4.2 Heuristic Algorithm 33 第5章 Simulation Results 36 5.1 Simulation Scemarios and Parameters 36 5.2 Power Consumption Comparison 37 第6章 Conclusions 41 參考文獻 42 圖目錄 圖 一、無線感測網路(Wireless Sensor Networks , WSNs) 1 圖 二、使用PS與AP結合之WPCN場景示意圖 3 圖 三、使用HAP之WPCN場景示意圖 4 圖 四、雙重進遠問題 5 圖 五、可重構智能表面(Reconfigurable Intelligent Surface, RIS) 7 圖 六、TDMA之HTT協議示意圖 8 圖 七、同時3個無線裝置使用NOMA傳輸之HTT協議示意圖 9 圖 八、網路模型場景與裝置距離示意圖 10 圖 九、網路模型場景與無線電力傳輸示意圖 11 圖 十、網路模型場景與無線資訊傳輸示意圖 12 圖 十一、結合非正交多址無線供電通訊網路時序示意圖 16 圖 十二、使用SLSQP完成ECm問題求出最佳充能時間 31 圖 十三、啟發式演算法(扇形法) 35 圖 十四、模擬實驗參數 36 圖 十五、10個無線裝置且最大傳輸上限個數為3的扇形法分布圖 37 圖 十六、20個無線裝置且最大傳輸上限個數為3的扇形法分布圖 38 圖 十七、30個無線裝置且最大傳輸上限個數為3的扇形法分布圖 38 圖 十八、不同無線裝置下電能消耗比較 39 圖 十九、迭代次數與電能消耗比較圖 40 |
參考文獻 |
參考文獻 [1] F. Yang, W. Xu, X. Liang and J. Lin, “Joint Energy Flow and Time Duration Optimization for Harvested Energy Driven WPCN,” in Proceedings of the IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1-6, 2017 [2] C. A. M. de Pinho and F. R. M. Lima, “Rate maximization with QoS guarantees in IRS-assisted WPCN-NOMA systems,” in Proceedings of the IEEE Workshop on Communication Networks and Power Systems (WCNPS), Fortaleza, Brazil, pp. 1-6, 2022. [3] M. Hua and Q. Wu, “Throughput Maximization for IRS-Aided MIMO FD-WPCN With Non-Linear EH Model,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 918-932, Aug. 2022. [4] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus and A. Yener, “Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies,” in IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1732-1743, September 2011. [5] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and Implications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443-461, Third Quarter 2011. [6] D. Song, W. Shin, J. Lee and H. V. Poor, "Sum-Throughput Maximization in NOMA-Based WPCN: A Cluster-Specific Beamforming Approach," in IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10543-10556, 1 July1, 2021, doi: 10.1109/JIOT.2021.3049956. [7] F. Yang, W. Xu, Z. Zhang, L. Guo and J. Lin, "Energy Efficiency Maximization for Relay-Assisted WPCN: Joint Time Duration and Power Allocation," in IEEE Access, vol. 6, pp. 78297-78307, 2018, doi: 10.1109/ACCESS.2018.2884953. [8] Z. Chen, J. Tang, X. Du, X. Zhang, D. K. C. So, and K. -K. Wong, “Joint Energy and Information Beamforming Design for RIS-assisted Wireless Powered Communication,” in Proceedings of the IEEE International Conference on Communication Technology (ICCT), Nanjing, China, pp. 536-540, 2022. [9] I. Azam, A. Qayyum, K. Asmoro and S. Y. Shin, “Joint Power and Reflecting Elements Optimization for Intelligent Reflecting Surface Assisted NOMA,” in Proceedings of the IEEE International Wireless Communications and Mobile Computing (IWCMC), Dubrovnik, Croatia, pp. 61-66, 2022. [10] K. Chi, Y. -H. Zhu, Y. Li, L. Huang and M. Xia, “Minimization of Transmission Completion Time in Wireless Powered Communication Networks,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1671-1683, Oct. 2017. [11] Q. Wu, W. Chen, D. W. K. Ng and R. Schober, “Spectral and Energy-Efficient Wireless Powered IoT Networks: NOMA or TDMA?,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6663-6667, July 2018. [12] D. Song, W. Shin, J. Lee and H. V. Poor, “Sum-Throughput Maximization for NOMA-Based WPCN with Signal Alignment,” in Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, pp. 1-6, 2020. [13] V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars, and M. G. Brown, "Comparison of empirical propagation path loss models for fixed wireless access systems," in Proc. IEEE 61st Vehicular Technology Conf., Stockholm, Sweden, 2005, vol. 1, pp. 73-77, doi: 10.1109/VETECS.2005.1543252. [14] Z. Chen, J. Tang, X. Du, X. Zhang, D. K. C. So and K. -K. Wong, "Joint Energy and Information Beamforming Design for RIS-assisted Wireless Powered Communication," 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 2022, pp. 536-540, doi: 10.1109/ICCT56141.2022.10073394. [15] C. Wu, F. Ke, X. Yang, M. Wen, D. Li and X. Zhang, “Joint Energy and Information Precoding for NOMA-Based WPCNs Aided by Reconfigurable Intelligent Surface,” IEEE Transactions on Vehicular Technology, vol. 72, no. 11, pp. 14559-14572, Nov. 2023. [16] D. Song, W. Shin and J. Lee, “A Maximum Throughput Design for Wireless Powered Communication Networks With IRS-NOMA,” IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 849-853, April. 2021. [17] N. N. Moghadam, H. Farhadi, P. Zetterberg, M. N. Khormuji, and M. Skoglund, "Interference Alignment: Practical Challenges and Test-bed Implementation," in Contemporary Issues in Wireless Communications, INTECH Publishers, 2014, doi: 10.5772/58832. [18] M. Al-Imari, P. Xiao, M. A. Imran, and R. Tafazolli, "Uplink Non-Orthogonal Multiple Access for 5G Wireless Networks," 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 2014, pp. 781-785, doi: 10.1109/ICC.2014.6883525. [19] C.-H. Wang, "Resource Allocation and User Grouping for Sum Rate and Fairness Optimization in Uplink NOMA Communication Systems," M.S. thesis, Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2017. [20] N. Xue, X. Mu, Y. Liu, Y. Liu and Y. Chen, "Hybrid NOMA Empowered Integrated Sensing and Communications," 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023, pp. 1648-1653, doi: 10.1109/ICCWorkshops57953.2023.10283560. [21] M. H. Kumar, S. Sharma, K. Deka and M. Thottappan, "Reconfigurable Intelligent Surfaces Assisted Hybrid NOMA System," in IEEE Communications Letters, vol. 27, no. 1, pp. 357-361, Jan. 2023, doi: 10.1109/LCOMM.2022.3211292. [22] A. Kumar and K. Kumar, "A Game Theory Based Hybrid NOMA for Efficient Resource Optimization in Cognitive Radio Networks," in IEEE Transactions on Network Science and Engineering, vol. 8, no. 4, pp. 3501-3514, 1 Oct.-Dec. 2021, doi: 10.1109/TNSE.2021.3116669. [23] N. R. Kota and K. Naidu, "Minimizing Energy Consumption in H-NOMA Based UAV-Assisted MEC Network," in IEEE Communications Letters, vol. 27, no. 9, pp. 2536-2540, Sept. 2023, doi: 10.1109/LCOMM.2023.3300467. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信