系統識別號 | U0002-2908202410240800 |
---|---|
DOI | 10.6846/tku202400730 |
論文名稱(中文) | 基於對比學習和知識圖譜的停車推薦系統 |
論文名稱(英文) | Parking Recommendation System Based on Contrastive Learning and Knowledge Graphs |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 高書劍 |
研究生(英文) | SHU-JIAN GAO |
ORCID | 0009-0004-2487-4906 |
學號 | 609414015 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-02 |
論文頁數 | 46頁 |
口試委員 |
口試委員
-
廖文華(whliao@ntub.edu.tw)
口試委員 - 蒯思齊(sckuai@ntub.edu.tw) 指導教授 - 張志勇(cychang@mail.tku.edu.tw) |
關鍵字(中) |
深度學習 人工智慧 推薦系統 知識圖譜 對比學習 |
關鍵字(英) |
Deep Learning Artificial Intelligence Recommendation Systems Knowledge Graphs Contrastive Learning |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
隨著智慧城市和智能交通系統的發展,停車推薦系統在城市管理中越來越重要。然而,傳統的停車推薦方法往往忽略了使用者的個性化需求以及外部環境因素,如天氣、溫度、停車費和使用者的職業與薪資等。為了解決這些問題,本研究提出了一個基於對比學習和知識圖譜的停車推薦系統。該系統透過對客戶嵌入和停車場嵌入進行建模,並綜合考慮環境溫度等影響因素,利用知識圖譜和對比學習技術來計算用戶對各停車場的滿意度,從而精準地為用戶推薦最適合的停車場。相比傳統方法,該系統能更有效地捕捉使用者喜好與實際需求,提高推薦結果的準確性和個性化水平。本研究的目標是設計出一個更加智能化和個性化的停車推薦系統,為用戶提供更優質的停車體驗,並提升城市停車管理的效率。 隨著智慧城市和智能交通系統的發展,停車推薦系統在城市管理中越來越重要。然而,傳統的停車推薦方法往往忽略了使用者的個性化需求以及外部環境因素,如天氣、溫度、停車費和使用者的職業與薪資等。為了解決這些問題,本研究提出了一個基於對比學習和知識圖譜的停車推薦系統。該系統透過對客戶嵌入和停車場嵌入進行建模,並綜合考慮環境溫度等影響因素,利用知識圖譜和對比學習技術來計算用戶對各停車場的滿意度,從而精準地為用戶推薦最適合的停車場。相比傳統方法,該系統能更有效地捕捉使用者喜好與實際需求,提高推薦結果的準確性和個性化水平。本研究的目標是設計出一個更加智能化和個性化的停車推薦系統,為用戶提供更優質的停車體驗,並提升城市停車管理的效率。 |
英文摘要 |
As smart cities and intelligent transportation systems develop, parking recommendation systems are becoming increasingly important in urban management. However, traditional parking recommendation methods often overlook users' personalized needs and external factors, such as weather, temperature, parking fees, and users' occupations and salaries. To address these issues, this study proposes a parking recommendation system based on contrastive learning and knowledge graphs. The system models customer embeddings and parking lot embeddings while considering factors like environmental temperature. It utilizes knowledge graphs and contrastive learning techniques to calculate user satisfaction with different parking lots, thus providing precise recommendations for the most suitable parking options. Compared to traditional methods, this system more effectively captures user preferences and actual needs, enhancing the accuracy and personalization of the recommendations. The goal of this study is to design a more intelligent and personalized parking recommendation system, offering users a better parking experience and improving the efficiency of urban parking management. |
第三語言摘要 | |
論文目次 |
目錄 目錄 VIII 圖目錄 VIII 表目錄 IX 第一章、簡介 1 第二章、相關研究 5 第三章、背景知識 18 3-1 EMBEDDING介紹 18 3-2 LIGHTGCN 介紹 20 3-3對比學習 介紹 22 第四章、系統架構 25 4-1環境與問題描述 25 4-1-1背景與動機 25 4-1-2目標 26 4-2整體系統架構 27 4-3 資料收集與前處理 27 4-4 嵌入生成與學習(LIGHTGCN) 29 4-5 推薦策略計算 31 4-6 出具推薦的可解釋性 35 第五章、實驗分析 39 5-1環境設定 39 5-2實驗數據 39 5-3實驗結果 40 5-4討論 43 第六章、結論 44 參考文獻 45 圖目錄 圖1 、整體系統架構 27 圖2 、資料前處理 28 圖3 、資料集: 建德市停車記錄原始資料 29 圖4 、核心功能架構圖 33 圖5 、用戶信息GCN嵌入示範 33 圖6 、用戶需求GCN嵌入示範 34 圖7 、停車場GCN嵌入示範 34 圖8 、上下文GCN嵌入示範 35 圖9 、用戶對比學習過程示範 35 圖10 、新用戶推薦可解釋過程 38 圖11 、新停車場推薦可解釋過程 38 圖12 、各模型的評估結果 42 圖13 、某用戶停車習慣反映在溫度天氣以及星期 43 表目錄 表1 、相關研究比較表 16 表2 、模型訓練環境 39 表3 、混淆矩陣舉例 41 表4 、各模型的評估結果 42 |
參考文獻 |
[1] S. Shukla · R. Gupta · S. Garg · S. Harit · R. Khan (*) “Real-Time Parking Space Detection and Management with Artifcial Intelligence and Deep Learning System” Department of Computer Science and Engineering, ABES Institute of Technology, AKTU, Ghaziabad, UP, India. Transforming Management with AI, Big-Data, and IoT,https://doi.org/10.1007/978-3-030-86749-2_7. [2] Akram Elomiya, Jiří Křupka, Stefan Jovčić, A Smart Parking System Using Surveillance Cameras and Fuzzy Logic: A Case Study at Computer Science,https://doi.org/10.1016/j.procs.2023.10.488. [3] S. R. Rizvi, S. Zehra and S. Olariu, "ASPIRE: An Agent-Oriented Smart Parking Recommendation System for Smart Cities," in IEEE Intelligent Transportation Systems Magazine, vol. 11, no. 4, pp. 48- 61, winter 2019, doi: 10.1109/MITS.2018.2876569. [4] Z. Li, M. Alazab, S. Garg and M. S. Hossain, "PriParkRec: PrivacyPreserving Decentralized Parking Recommendation Service," in IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4037- 4050, May 2021, doi: 10.1109/TVT.2021.3074820. [5] Y. Saleem et al., "IoTRec: The IoT Recommender for Smart Parking System," in IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 280-296, 1 Jan.-March 2022, doi: 10.1109/TETC.2020.3014722. [6] E. H. -K. Wu, J. Sahoo, C. -Y. Liu, M. -H. Jin and S. -H. Lin, "Agile Urban Parking Recommendation Service for Intelligent Vehicular Guiding System," in IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 1, pp. 35-49, Spring 2014, doi: 10.1109/MITS.2013.2268549. [7] C. -L. Chen and W. -C. Chiu, "A recommendation model of smart parking," 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), Guilin, China, 2017, pp. 2762-2766, doi: 10.1109/FSKD.2017.8393216. [8] G. Baranwal, D. Kumar and D. P. Vidyarthi, "A Multi-Criteria Framework for Smart Parking Recommender System," 2020 IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 2020, pp. 1-8, doi: 10.1109/ISC251055.2020.9239098. 48 [9] K. S. Liu, J. Gao, X. Wu and S. Lin, "On-Street Parking Guidance with Real-Time Sensing Data for Smart Cities," 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 2018, pp. 1-9, doi: 10.1109/SAHCN.2018.8397113. [10]S. Yan, N. E. O'Connor and M. Liu, "U-Park: A User-Centric Smart Parking Recommendation System for Electric Shared Micromobility Services," in IEEE Transactions on Artificial Intelligence, doi: 10.1109/TAI.2024.3428513. [11]A. Yavari, P. P. Jayaraman and D. Georgakopoulos, "Contextualised service delivery in the Internet of Things: Parking recommender for smart cities," 2016 IEEE 3rd World Forum on Internet of Things (WFIoT), Reston, VA, USA, 2016, pp. 454-459, doi: 10.1109/WFIoT.2016.7845479. [12]H. Sun, X. Huang and W. Ma, "Beyond Prediction: On-Street Parking Recommendation Using Heterogeneous Graph-Based List-Wise Ranking," in IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 6, pp. 5892-5903, June 2024, doi: 10.1109/TITS.2023.3336808. [13]LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '20). Association for Computing Machinery, New York, NY, USA, 639– 648. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信