| 系統識別號 | U0002-2807202521005000 |
|---|---|
| DOI | 10.6846/tku202500625 |
| 論文名稱(中文) | 真空膜盒電容式微型壓力感測器之研製 |
| 論文名稱(英文) | Development of Vacuum-Chamber type Capacitive Micro Pressure Sensors |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 機械與機電工程學系碩士班 |
| 系所名稱(英文) | Department of Mechanical and Electro-Mechanical Engineering |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 蔣德昱 |
| 研究生(英文) | De-Yu Jiang |
| ORCID | 0009-0008-0935-7504 |
| 學號 | 612370089 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-06-04 |
| 論文頁數 | 94頁 |
| 口試委員 |
指導教授
-
楊龍杰(ljyang@mail.tku.edu.tw)
(0000-0002-0639-0973)
口試委員 - 李其源 (0009-0002-7529-582X) 口試委員 - 施鴻源 (0000-0002-0802-9436) |
| 關鍵字(中) |
互補式金氧半微機電 壓力感測器 電容式 真空膜盒 AD7746 超臨界乾燥 |
| 關鍵字(英) |
CMOS-MEMS pressure sensor Capacitive Vacuum-Chamber type AD7746 supercritical drying |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
先前經驗得知壓阻式壓力感測器在風場內進行量測時對於流速的靈敏度大於對風場壓力的靈敏度,使其壓力量測功能等同失效,因此本研究欲開發電容式壓力感測器來進行風場壓力的量測。 本研究主要利用UMC 0.18μm 互補式金氧半微機電製程平台,配合金屬濕蝕刻、超臨界乾燥以及高分子沉積封裝來完成電容式絕對型壓力感測器,量測架構則透過 AD7746 為CVC(Capacitance-to-Voltage Converter)將電容訊號轉換為電壓訊號,使其更好進行量測。 本電容式壓力感測器外型為真空膜盒,使用雙邊可動圓形薄膜當作感測電極,參考接觸式電容式來提升線性度,並設計階梯狀近似斜坡狀的薄膜改變薄膜接觸位置,以及提升輸出靈敏度。 |
| 英文摘要 |
including applications involving flapping-wing aerial vehicles and wind turbines. Prior investigations revealed that piezoresistive pressure sensors exhibit greater sensitivity to flow velocity than to ambient pressure variations within wind fields, thereby compromising their accuracy in pressure measurements. To address this limitation, the present study proposes the development of a capacitive pressure sensor tailored for precise wind field pressure measurement. The sensor is fabricated using the UMC 0.18 μm CMOS-MEMS process platform, incorporating key post-processing steps such as metal wet etching, supercritical CO₂ drying, and polymer encapsulation. The sensing architecture employs the AD7746 as a Capacitance-to-Voltage Converter (CVC), enabling the conversion of capacitance signals into voltage outputs for enhanced measurement fidelity. Structurally, the capacitive pressure sensor features a vacuum-sealed diaphragm capsule design with dual movable circular membranes functioning as sensing electrodes. A contact-mode capacitive configuration is adopted to improve linearity. Furthermore, a stepped, slope-like membrane profile is introduced to modulate the contact location and enhance output sensitivity. |
| 第三語言摘要 | |
| 論文目次 |
第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 論文架構 6 第二章 微機電系統與CMOS MEMS製程介紹 7 2-1 微機電系統介紹 7 2-2 微機電製造技術 8 2-2-1 體型微細加工 8 2-2-2 面型微細加工 10 2-3 UMC 0.18μm CMOS MEMS製程平台 11 第三章 壓力感測器 13 3-1 壓力感測器原理及分類 13 3-1-1壓力感測器原理 13 3-1-2壓阻式壓力感測器 14 3-1-3壓電式壓力感測器 16 3-1-4電容式壓力感測器 18 第四章 元件設計與模擬 22 4-1 感測結構設計 22 4-1-1 電容式壓力感測器感測原理 22 4-1-2 感測薄膜結構設計 24 4-1-3腔體結構設計 27 4-1-4 Metal 7光罩設計 30 4-2 結構分析與模擬 32 第五章 結構佈局與後製程 37 5-1 壓力感測器結構佈局 37 5-2 壓力感測器後製程 42 5-3 薄膜沾黏問題 43 5-4 壓力感測器後製程結果 46 第六章 量測結果與討論 50 6-1 壓力感測器量測 50 6-1-1 壓力感測器量測儀器架構 50 6-1-2 AD7746 evaluation board介紹 53 6-1-3 量測架構雜散電容情況 56 6-1-4 壓力感測器靈敏度量測分析 67 6-2 壓力感測器量測結果與討論 69 參考文獻 71 附錄A 元件各層layout 76 附錄B 各蝕刻情況OM圖 87 圖目錄 圖1-1達文西飛行之書手稿 4 圖1-2壓阻式壓力感測器風洞試驗 5 圖1-3毅力號 5 圖1-4雙邊可動薄膜電容式壓力感測器 6 圖2-1體型微細加工剖面圖 9 圖2-2側向侵蝕剖面圖 10 圖2-3犧牲層示意圖 11 圖2-4 CMOS中MEMS區塊與Circuit區塊 12 圖2-5 Metal7在CMOS諸層之上 12 圖3-1巴登管 13 圖3-2未安裝的電阻箔應變規 14 圖3-3壓阻式壓力感測器 15 圖3-4惠斯登電橋 15 圖3-5左為正壓電效應;右為逆壓電效應 17 圖3-6電容式壓力感測器原理示意圖 18 圖3-7電容式壓力感測器電容-壓力曲線 19 圖3-8接觸式電容壓力感測器 20 圖4-1電容式壓力感測器工作原理 23 圖4-2接觸式壓力感測器 25 圖4-3新型態之接觸式壓力感測器 25 圖4-4近似幾何之接觸式壓力感測器 25 圖4-6感測薄膜組成示意圖 26 圖4-5本研究電容式壓力感測器立體圖及剖面圖 26 圖4-7元件腔體組成 28 圖4-8 Parylene coater 29 圖4-9 Parylene coating 29 圖4-10 Metal 7光罩製程 30 圖4-11蝕刻孔分佈及側切示意圖 31 圖4-12設計參數對照圖 32 圖4-13 COMSOL Multiphysics程式 33 圖4-14接觸對偶功能(Contact Pair) 34 圖4-15 FEM模擬分析圖 35 圖4-16 FEM電容值模擬結果圖 36 圖5-1本研究壓力感測器layout佈局 38 圖5-2感測電極及導線佈局 39 圖5-3 Metal 7佈局 40 圖5-4犧牲層與蝕刻孔關係圖 41 圖5-5後製程流程圖 42 圖5-6 SAMDRI-795 45 圖5-7 CO2三相圖及臨界點 46 圖5-8使用食人魚溶液蝕刻OM圖 47 圖5-9被蝕刻之PAD 48 圖5-10塗抹正光阻烤乾後之PAD 49 圖5-11使用HCl蝕刻後 49 圖6-1量測儀器架設示意圖 50 圖6-2真空腔 51 圖6-3 Agilent E4980A 51 圖6-4 本研究量測新架構 52 圖6-5 AD7746 evaluation board 52 圖6-6 AD7746 evaluation Software 53 圖6-7 AD7746 evaluation board面板 57 圖6-8未連接任何導線之電容量測分析 57 圖6-9 RF電纜組件SMB Plug to SMB Plug RG316 6in 58 圖6-10 SMB Plug與Jack接頭 58 圖6-11連接同軸電纜量測示意圖 59 圖6-12連接同軸電纜之電容量測分析 59 圖6-13 PCB洗板流程 61 圖6-14 AD7746 evaluation board連接PCB 62 圖6-15 AD7746 evaluation board連接PCB電容量測分析 63 圖6-16設計PCB板EasyEDA介面 63 圖6-17 AD7746 evaluation board連接新PCB板 64 圖6-18 AD7746 evaluation board連接新PCB板電容量測分析 65 圖6-19 USB線拉出示意圖 66 圖6-20用於延長測試的USB線 67 圖6-21延長USB訊號線電容量測分析 67 圖6-22量測架構擺放 68 圖6-23完整架構電容量測分析 68 圖6-24量測結果關係圖 69 圖A-1 M1與VIA1 76 圖A-2 VIA1與M2 77 圖A-3 M2與VIA2 78 圖A-4 VIA2與M3 79 圖A-5 M3與VIA3 80 圖A-6 VIA3與M4 81 圖A-7 M4與VIA4 82 圖A-8 VIA4與M5 83 圖A-9 M5與VIA5 84 圖A-10 VIA5與M6 85 圖A-11 PAD 86 圖B-1M1細節蝕刻圖 87 圖B-2 M2細節蝕刻圖 87 圖B-3單一元件局部蝕刻圖 88 圖B-4單一元件局部蝕刻圖 89 圖B-5 M2細節蝕刻圖 89 圖B-6陣列元件蝕刻圖 90 圖B-7單一元件局部蝕刻圖 90 圖B-8單一元件局部蝕刻圖 91 圖B-9單一元件局部蝕刻圖 91 圖B-10單一元件局部蝕刻圖 92 圖B-11陣列元件蝕刻圖 92 圖B-12單一元件局部蝕刻圖 93 圖B-13單一元件局部蝕刻圖 93 圖B-14單一元件局部蝕刻圖 94 圖B-15單一元件局部蝕刻圖 94 表目錄 表3-1常用壓電阻材料的計示因子 16 表3-2 MEMS壓力感測器特色表 21 表4-1 UMC 0.18μm CMOS MEMS製程膜層厚度表 27 |
| 參考文獻 |
[1] https://en.wikipedia.org/wiki/Codex_on_the_Flight_of_Birds [2] Tsiolkovsky, K. E. (1903). The exploration of cosmic space by means of reaction devices. Scientific Review, 5, 60-132. [3] https://www.spacex.com/ [4] Feynman, R. (2018). There’s plenty of room at the bottom. In Feynman and computation (pp. 63-76). CRC Press. [5] Baney, W., Chilcott, D., Huang, X., Long, S., Siekkinen, J., Sparks, D., & Staller, S. (1997). A comparison between micromachined piezoresistive and capacitive pressure sensors. SAE transactions, 562-565. [6] 辛親德. (2019). 金氧半微機電壓力感測器與感測電路. 淡江大學電機工程學系碩士班學位論文, 2019, 1-71. [7] Kubba, A. E., Hasson, A., Kubba, A. I., & Hall, G. (2016). A micro-capacitive pressure sensor design and modelling. Journal of Sensors and Sensor Systems, 5(1), 95-112. [8] 柯呈翰. (2019). CMOS 微機電電容式壓力感測器之開發. 清華大學電子工程研究所學位論文, 1-45. [9] 費約瑟. (2023). 互補式金氧半微機電感測器之製作封裝與無線訊號擷取. 淡江大學機械與機電工程學系博士班學位論文, 1-172. [10] 衛瑞紗. (2022). 整合式金氧半微機電流速計及其在拍翼之應用. 淡江大學機械與機電工程學系博士班學位論文, 1-121. [11] https://science.nasa.gov/mission/mars-2020-perseverance/science-instruments/#sensors [12] Jaakonaho, I., Hieta, M., Genzer, M., Polkko, J., Mäkinen, T., Sánchez-Lavega, A., ... & Rodríguez-Manfredi, J. A. (2023). Pressure sensor for the Mars 2020 Perseverance rover. Planetary and Space Science, 239, 105815. [13] Rodriguez-Manfredi, J. A., De la Torre Juárez, M., Alonso, A., Apéstigue, V., Arruego, I., Atienza, T., ... & MEDA team. (2021). The Mars Environmental Dynamics Analyzer, MEDA. A suite of environmental sensors for the Mars 2020 mission. Space science reviews, 217, 1-86. [14] Lei, K. F., Lee, K. F., & Lee, M. Y. (2012). Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement. Microelectronic Engineering, 99, 1-5. [15] https://www.tsri.org.tw/main.jsp [16] Lin, W. C., Cheng, C. L., Wu, C. L., & Fang, W. (2017, June). Sensitivity improvement for CMOS-MEMS capacitive pressure sensor using double deformarle diaphragms with trenches. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 782-785). IEEE. [17] 楊龍杰. (2023). 掌握微機電,再版,蒼海書局. [18] Bao, M. H. (2000). Micro mechanical transducers: pressure sensors, accelerometers and gyroscopes (Vol. 8). Elsevier. [19] Weigold, J. W., Brosnihan, T. J., Bergeron, J., & Zhang, X. (2006, January). A MEMS condenser microphone for consumer applications. In 19th IEEE International Conference on Micro Electro Mechanical Systems (pp. 86-89). IEEE. [20] Zhang, J., Wang, C., Xie, X., Li, M., Li, L., & Mao, X. (2021). Development of MEMS composite sensor with temperature compensation for tire pressure monitoring system. Journal of Micromechanics and Microengineering, 31(12), 125015. [21] Utz, A., Walk, C., Stanitzki, A., Mokhtari, M., Kraft, M., & Kokozinski, R. (2018). A high-precision and high-bandwidth MEMS-based capacitive accelerometer. IEEE Sensors Journal, 18(16), 6533-6539. [22] Kovacs, G. T., Maluf, N. I., & Petersen, K. E. (2002). Bulk micromachining of silicon. Proceedings of the IEEE, 86(8), 1536-1551. [23] Bustillo, J. M., Howe, R. T., & Muller, R. S. (1998). Surface micromachining for microelectromechanical systems. Proceedings of the IEEE, 86(8), 1552-1574. [24] Van Spengen, W. M. (2018). The Electrostatic Actuation of MEMS with High Voltage Amplifiers From Comb Drive Levitation and Pull-in to Dielectric Charging and Position Noise. Falco Systems Application Note, Version, 1. [25] Eaton, W. P., & Smith, J. H. (1997). Micromachined pressure sensors: review and recent developments. Smart Materials and Structures, 6(5), 530. [26] Higson, G. (1964). Recent advances in strain gauges. Journal of Scientific Instruments, 41(7), 405. [27] French, P. J., & Evans, A. G. R. (1989). Piezoresistance in polysilicon and its applications to strain gauges. Solid-State Electronics, 32(1), 1-10. [28] Kang, M., Ri, C., & Choe, J. (2021). Capacitance response of concave well substrate touch-mode capacitive pressure sensor: Mathematical analysis and simulation. Microelectronics Journal, 114, 105118. [29] Yang, L. J., Waikhom, R., Shih, H. Y., & Lee, Y. K. (2022). Foundry service of CMOS MEMS processes and the case study of the flow sensor. Processes, 10(7), 1280. [30] Narducci, M., Yu-Chia, L., Fang, W., & Tsai, J. (2013). CMOS MEMS capacitive absolute pressure sensor. Journal of Micromechanics and Microengineering, 23(5), 055007. [31] Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. [32] Xu, W., Wang, X., Mousa, B., Paszkiewicz, M., & Lee, Y. K. (2020). A CMOS MEMS thermal flow sensor for gas and liquid with parylene-C coating. IEEE Transactions on electron devices, 68(2), 919-922. [33] https://www.comsol.com/ [34] https://www.comsol.com/model/capacitive-pressure-sensor-476 [35] https://www.cadence.com/zh_TW/home.html [36] Tsai, M. H., Sun, C. M., Liu, Y. C., Wang, C., & Fang, W. (2009). Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors. Journal of Micromechanics and Microengineering, 19(10), 105017. [37] Yang, L. J., Liu, K. C., & Lin, W. C. (2014). On deriving surface tension force in MEMS. Journal of Applied Science and Engineering, 17(3), 223-230. [38] 陳冠宇. (2007). 微流道毛細填充流動之理論與實驗研究. 淡江大學機械與機電工程學系碩士班學位論文, 2007, 1-78. [39] Yapu, Z. (2003). Stiction and anti-stiction in MEMS and NEMS. Acta Mechanica Sinica, 19(1), 1-10. [40] https://www.analog.com/en/resources/analog-dialogue/articles/capacitance-to-digital-converter-technology-healthcare.html [41] Devices, A. (2005). 24-Bit capacitance-to-digital converter with temperature sensor. AD7745/AD7746. [42] Tarapata, G., & Sienkiewicz, R. (2015, September). Comparison of measurement methods for capacitive tactile sensors and their implementation. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015 (Vol. 9662, pp. 1381-1389). SPIE. [43] Huang, Z., Zhu, J., & Lu, L. (2011). An AD7746-based data acquisition system for capacitive pressure sensor in weather detection application. Key Engineering Materials, 483, 461-464. [44] Tarapata, G., & Sienkiewicz, R. (2015, September). Comparison of measurement methods for capacitive tactile sensors and their implementation. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2015 (Vol. 9662, pp. 1381-1389). SPIE. [45] https://www.analog.com/media/en/technical-documentation/evaluation-documentation/eval-ad7746eb.pdf [46] https://easyeda.com/ |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信