系統識別號 | U0002-2806202421233800 |
---|---|
DOI | 10.6846/tku202400387 |
論文名稱(中文) | 半參數模型在加速應力試驗中的驗收時間評估 |
論文名稱(英文) | Acceptance Time Assessment Using Semi-Parametric Model in Accelerated Stress Testing |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 數學學系數學與數據科學碩士班 |
系所名稱(英文) | Master's Program, Department of Mathematics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 劉雨帆 |
研究生(英文) | Yu-Fan Liu |
學號 | 611190090 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-06-24 |
論文頁數 | 34頁 |
口試委員 |
指導教授
-
蔡志群(141400@mail.tku.edu.tw)
口試委員 - 温啓仲 口試委員 - 吳裕振 |
關鍵字(中) |
加速應力驗收時間 B 樣條 半參數衰變模型 |
關鍵字(英) |
Accelerated-stress acceptance time B-spline semi-parametric degradation model |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
科技進步日新月異,現代的科技產品展現了較高的可靠度,這使得在給定的試驗時間內觀察到試驗 樣品的失效資料變得相對困難。為了克服此問題,可將試驗樣品置於較高的環境壓力下,使其加速 衰變過程,從而縮短產品的驗收時間,此種方法稱為加速應力驗收試驗 (accelerated-stress acceptance test)。本篇文章以一組晶片電阻器的衰變數據為例,運用半參數方法建構出 B 樣條衰變 模型,用以描述電阻器在不同應力下,其電阻值相對變化率的衰變路徑,以預估不同應力下的最佳 加速應力驗收時間。同時,在給定的信心水準下,使用拔靴法 (bootstrap method) 求得最佳加速壓 力驗收時間的信賴區間。此外,本文亦探討當錯誤使用有母數衰變模型時,對於最佳加速應力驗收 時間推估的精準度影響,並與本文所提的方法進行比較。 |
英文摘要 |
Technological advancements are rapid and continuous, resulting in modern tech products that exhibit higher reliability. This made it relatively difficult to observe failure data of test samples within the reasonable experimental time. To address this issue, test samples can be subjected to higher environmental stresses to accelerate the degradation process, thereby shortening the acceptance time of the products. This method is known as accelerated-stress acceptance test. Motivated by degradation data of the resistors, a semi-parametric with Bspline method is utilized to establish its degradation model that describes the degradation path for the relative changes of resistance values under different stress conditions, in order to estimate the optimal accelerated stress acceptance time for various stress levels. Additionally, at a specified confidence level, the bootstrap method is used to obtain the confidence interval for the optimal accelerated stress acceptance time. Furthermore, the thesis investigates the impact on the accuracy and precision of the estimated optimal accelerated stress acceptance time when erroneously using a parametric degradation model, and compares it with the proposed method. |
第三語言摘要 | |
論文目次 |
1 緒論 ...................................................................................................................................... 1 1.1 前言................................................................................................................................................1 1.2 文獻探討........................................................................................................................................3 1.2.1 衰變模型................................................................................................................................3 1.2.2 B 樣條 ....................................................................................................................................5 1.2.3 拔靴法....................................................................................................................................9 1.3 研究動機與目的..........................................................................................................................12 1.4 研究架構......................................................................................................................................16 2 加速應力驗收試驗......................................................................................................... 17 2.1 B 樣條半參數衰變模型 ..............................................................................................................17 2.2 驗收時間......................................................................................................................................21 3 資料與模擬分析............................................................................................................. 23 3.1 節點選擇......................................................................................................................................23 3.2 半參數選擇與資料分析..............................................................................................................25 3.3 模擬分析......................................................................................................................................28 4 結論與未來發展............................................................................................................. 31 參考文獻 ....................................................................................................................................... 32 |
參考文獻 |
1. Berlicki, T. (1985). "Voltage degradation model of thin film capacitors." Active and Passive Electronic Components 12: 63-70. 2. De Boor, C. (1972). "On calculating with B-splines." Journal of Approximation Theory 6(1): 50-62. 3. Ding, Y., Q. Yang, C. B. King and Y. Hong (2019). "A general accelerated destructive degradation testing model for reliability analysis." IEEE Transactions on Reliability 68(4): 1272-1282. 4. Efron, B. and R. Tibshirani (1986). "Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy." Statistical Science: 54-75. 5. Efron, B. and R. J. Tibshirani (1994). An introduction to the bootstrap, Chapman and Hall/CRC. 6. Giorgi, R., M. Abrahamowicz, C. Quantin, P. Bolard, J. Esteve, J. Gouvernet and J. Faivre (2003). "A relative survival regression model using B‐spline functions to model non‐proportional hazards." Statistics in Medicine 22(17): 2767-2784. 7. Gordon, W. J. and R. F. Riesenfeld (1974). "Bernstein-Bézier methods for the computer-aided design of free-form curves and surfaces." Journal of the ACM (JACM) 21(2): 293-310. 33 8. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai, Montreal, Canada. 9. Lawless, J. and M. Crowder (2004). "Covariates and random effects in a gamma process model with application to degradation and failure." Lifetime Data Analysis 10: 213-227. 10. Lu, C. J. and W. O. Meeker (1993). "Using degradation measures to estimate a time-to-failure distribution." Technometrics 35(2): 161-174. 11. Peng, C.-Y. and S.-T. Tseng (2009). "Mis-specification analysis of linear degradation models." IEEE Transactions on Reliability 58(3): 444-455. 12. Tsai, C.-C., C.-T. Lin and N. Balakrishnan (2015). "Optimal design for accelerated-stress acceptance test based on Wiener process." IEEE Transactions on Reliability 64(2): 603-612. 13. Wang, X. (2009). "Nonparametric estimation of the shape function in a Gamma process for degradation data." Canadian Journal of Statistics 37(1): 102-118. 14. Xie, Y., C. B. King, Y. Hong and Q. Yang (2018). "Semiparametric models for accelerated destructive degradation test data analysis." Technometrics 60(2): 222- 234. 15. Ye, Z.-S., Y. Wang, K.-L. Tsui and M. Pecht (2013). "Degradation data analysis using Wiener processes with measurement errors." IEEE Transactions on 34 Reliability 62(4): 772-780. 16. 陳怡芬 (2020). "B 樣條模型之 EVA 膜交聯度最佳層壓試驗." 淡江大學數學 學系數學與數據科學碩士班學位論文 2020: 1-32. 17. 賈其蓁 (2019). "在維納過程下加速應力允收試驗時間預估與最佳試驗設計." 淡江大學數學學系數學與數據科學碩士班學位論文 2019: 1-39. 18. 雷奕賢 (2022). "基於 B 樣條模型的加速應力驗收試驗." 淡江大學數學學系 數學與數據科學碩士班學位論文 2022: 1-31. 19. 羅月卿 (2021). "基於半參數模型下之太陽能 EVA 膜最佳層壓試驗." 淡江大 學數學學系碩士班學位論文 2021: 1-46 |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信