§ 瀏覽學位論文書目資料
系統識別號 U0002-2709202112531000
DOI 10.6846/TKU.2021.00763
論文名稱(中文) IEEE 802.11ax無線區域網路中最小化延遲時間的資源分配研究
論文名稱(英文) Resource Allocation for Minimizing Delay in IEEE 802.11ax WLANs
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系資訊網路與多媒體碩士班
系所名稱(英文) Master's Program in Networking and Multimedia, Department of Computer Science and Information Engine
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 陳佩妘
研究生(英文) Pei-Yun Chen
學號 608420054
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-05
論文頁數 40頁
口試委員 指導教授 - 石貴平(kpshih@mail.tku.edu.tw)
委員 - 陳彥達(ydchen@gm.lhu.edu.tw)
委員 - 王三元(sywang@isu.edu.tw)
關鍵字(中) IEEE 802.11ax
OFDMA
資源分配
傳輸延遲
WLANs
關鍵字(英) IEEE 802.11ax
OFDMA
resource allocation
transmission delay
WLANs
第三語言關鍵字
學科別分類
中文摘要
本論文針對無線區域網路(Wireless Local Area Networks, WLANs)中,現有的(Orthogonal Frequency Division Multiple Access, OFDMA)上傳機制所造成的傳輸延遲問題,提出有效的解決策略。現今隨著無線網路迅速發展,人們對於WLANs的需求越來越高,為了滿足使用者的需求,IEEE 802.11ax標準加入了OFDMA的機制,讓多個節點可以同時傳輸資料。而在IEEE 802.11ax上傳機制中,有兩種傳輸方式: 1)透過競爭的方式傳輸,2)透過AP調度的方式傳輸。這兩種傳輸方式皆可能出現後面要傳送資料的節點因傳輸延遲時間太長而造成封包丟棄的問題。因此本論文提出一種新的分配機制,用於解決節點傳輸延遲問題。此機制將選擇資料量較少的節點先分配傳輸。另外本論文亦提出一判斷方式以切割資料,來降低傳輸延遲時間。根據模擬結果顯示此機制可以有效降低傳輸延遲時間,並有效的提高網路的效能。
英文摘要
The paper proposes effective solutions to the transmission delay problem caused by the OFDMA (Orthogonal Frequency Division Multiple Access) uplink transmission delay in wireless local area networks (WLANs). Nowadays, with the rapid development of wireless networks, the demand for WLANs is getting higher and higher. To meet the needs of high traffic load, the IEEE 802.11ax standard adopts the OFDMA mechanism to allow multiple users to transmit at the same time. In IEEE 802.11ax uplink transmissions, there are two transmission methods: 1) Random Access (RA) and 2) Scheduled Access (SA). Both two transmission methods suffer the long transmission delay problem. Therefore, the paper proposes a new resource allocation mechanism to solve the long transmission delay problem. The proposed mechanism can select the node with a small amount of data to allocate resources first. Moreover, the proposed mechanism also designs a criterion to cut the data to reduce the transmission delay time. According to the simulation results, the proposed mechanism can effectively reduce the transmission delay time and improve the performance of the network.
第三語言摘要
論文目次
第1章	介紹	1
第2章	背景知識	13
第3章	最小化傳輸延遲問題模型建	17
第4章	傳輸延遲最小化RU分配方案(RU Allocation with Transmission Delay Minimization Scheme (RATDM))	23
4.1理論基礎	23
4.2AP切割資料的方式	28
第5章	效能評估	31
5.1實驗場景及參數設定	31
5.2實驗結果	32
5.3實驗總結	35
第6章	結論	36
參考文獻	36
 
圖目錄
圖一、DL MU-OFDMA傳輸	2
圖二、TF的封包格式	3
圖三、UORA傳輸機制	4
圖四、AP所告知的傳輸時間較短	5
圖五、BSR傳輸	6
圖六、BSR的封包格式	6
圖七、BSR傳輸(padding)	7
圖八、OBSS圖	8
圖九、PSR操作時序圖	8
圖十、OPSR 操作時序圖	9
圖十一、SA RU和RA RU 操作時序圖	10
圖十二、OFDMA	13
圖十三、20MHz 頻道中的 RU 位置	15
圖十四、網路模型	17
圖十五、AP排程	19
圖十六、資料量較大的節點先分配RU	24
圖十七、資料量較小的節點先分配RU	25
圖十八、AP分配較小RU	26
圖十九、AP分配較大RU	27
圖二十、RATDM運作方式	29
圖二十一、AP選擇不同大小的RU分配網路延遲	32
圖二十二、AP選擇不同大小的RU分配網路效能	33
圖二十三,AP選擇不同節點先分配RU的網路延遲	34
圖二十四,AP選擇不同節點先分配RU的網路效能	35
 
表目錄
表一、不同頻寬的RU個數	14
表二、20 MHZ 頻段中可用的 RU 分配方案	14
表三、在20MHz中不同RU中的數據速率(Mbps)	15
表四、MCS的SNR門檻值	16
表五、符號的定義	18
表六、模擬參數[18]	31
參考文獻
[1].	I. Dolińska, M. Jakubowski, and A. Masiukiewicz, “New IEEE 802.11 HEW Standard Throughput per STA Analysis,” in Proceedings of the International Conference on Information and Digital Technologies (IDT 2019), Jun. 2019, pp. 118-123.
[2].	E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, first Luarter 2019, pp. 197–216.
[3].	L. Lu, B. Li, M. Yang, et al. “Survey and Performance Evaluation of the Upcoming Next Generation WLAN Standard-IEEE 802.11ax,” Networking and Internet Architecture, Jun. 2018, [Online]. Available: https://arxiv.org/abs/1806.05908.
[4].	J. Lee, D.-J. Deng, and K.-C. Chen, “OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN,” in Proceedings of the International Wireless Communications & Mobile Computing Conference (IWCMC 2018), Limassol, Jun. 2018, pp. 188-193.
[5].	J. Wang, M. Wu, L. Chen, Y. Zheng, and Y. Zhu, “Probability Complementary Transmission Scheme for Uplink OFDMA-based Random Access in 802.11ax WLAN,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2019), Apr. 2019, pp. 1-7.
[6].	J. Kim, H. Lee and S. Bahk, “CRUI: Collision Reduction and Utilization Improvement in OFDMA-Based 802.11ax Networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM 2019), Dec. 2019, pp. 1-6.
[7].	D. Xie, J. Zhang, A. Tang and X. Wang, “Multi-Dimensional Busy-Tone Arbitration for OFDMA Random Access in IEEE 802.11ax,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 4080-4094, Jun. 2020.Jorden Lee, “OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN ,” in Proceedings of the International Wireless Communications & Mobile Computing Conference (IWCMC 2018), 2018.
[8].	K. Wang and K. Psounis, “Scheduling and Resource Allocation in 802.11ax,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2018), Apr. 2018, pp. 279–287.
[9].	R. M. Karthik and S. Palaniswamy, “Resource Unit (RU) Based OFDMA Scheduling in IEEE 802.11ax System,” in Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI 2018), Sep. 2018, pp. 1297-1302.
[10].	K. Dovelos and B. Bellalta, ‘‘Optimal Resource Allocation in IEEE 802.11ax Uplink OFDMA with Scheduled Access,’’ in Networking and Internet Architecture, 2018, pp. 1–17, [Online]. Available: http://arxiv.org/abs/1811.00957.
[11].	D. G. Filoso, R. Kubo, K. Hara, S. Tamaki, K. Minami, and K. Tsuji, “Proportional-based Resource Allocation Control with LoS Adaptation for IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2020), Jun. 2020, pp. 1-6.
[12].	S. Kotera, B. Yin, K. Yamamoto, T. Nishio, M. Morikura, and H. Abeysekera, “Latency-Aware Fair Scheduling for Spatial Reuse in WLANs: A Lyapunov Optimization Approach,” in Proceedings of the 18th Annual IEEE Consumer Communications & Networking Conference (CCNC 2021), Jan. 2021, pp. 1-6.
[13].	E. C. Rodrigues, A. Garcia-Rodriguez, L. G. Giordano, and G. Geraci, “On the Latency of IEEE 802.11ax WLANs with Parameterized Spatial Reuse,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM 2020), Dec. 2020, pp. 1-6.
[14].	H. Lee, H. -S. Kim and S. Bahk, “LSR: Link-aware Spatial Reuse in IEEE 802.11ax WLANs,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2021), Apr. 2021, pp. 1-6.
[15].	S. Avallone, P. Imputato, G. Redieteab, C. Ghosh, and S. Roy, “Will OFDMA Improve the Performance of 802.11 WiFi Networks?,” IEEE Wireless Communications, Jun. 2021, pp. 1-8.
[16].	S. Bhattarai, G. Naik, and J. J. Park, “Uplink Resource Allocation in IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2019), May 2019, pp. 1–6.
[17].	D. Bankov, A. Didenko, E. Khorov, and A. Lyakhov, “OFDMA Uplink Scheduling in IEEE 802.11ax Networks,” in Proceedings of the IEEE International Conference on Communications (ICC 2018), May 2018, pp. 1–6.
[18].	M. Wu, J. Wang, Y. Zhu, and J. Hong, “High Throughput Resource Unit Assignment Scheme for OFDMA-based WLAN,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2019), Apr. 2019, pp.1–8.
[19].	M. Ş. Kuran, A. Dilmac, Ö. Topal, B. Yamansavascilar, S. Avallone, and T. Tugcu, “Throughput-maximizing OFDMA Scheduler for IEEE 802.11ax Networks,” in Proceedings of the 31st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2020), Sep. 2020.
[20].	A. Dutta, N. Gupta, S. Das, and M. Maity, “MMRU-ALLOC: An Optimal Resource Allocation Framework for OFDMA in IEEE 802.11ax,” in Proceedings of the 31st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2020), Sep. 2020.
[21].	R. Grunheid, E. Bolinth, H. Rohling and K. Arzt, “Adaptive Modulation for the HIPERLAN2 Air interface,” in Proceedings of 5th International OFDM Workshop, Sep. 2000.
[22].	B. Bellalta and K. Kosek-Szott, ‘‘AP-initiated multi-user transmissions in IEEE 802.11ax WLANs,’’ Ad Hoc Networks, vol. 85, pp. 145–159, Mar. 2019.
[23].	Simone Merlin. OFDMA performance in 11ax. [Online]. Available:  https://mentor.ieee.org/802.11/dcn/16/11-16-0379-00-00ax-trigger-frame-format.docx
[24].	MATLAB R2020a and WLAN System Toolbox v2.0. Available: https://www.mathworks.com/products/matlab.html
論文全文使用權限
校內
校內紙本論文延後至2026-09-25公開
同意電子論文全文授權校園內公開
校內電子論文延後至2026-09-25公開
校內書目立即公開
校外
同意授權予資料庫廠商
校外電子論文延後至2026-09-25公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信