系統識別號 | U0002-2709202112531000 |
---|---|
DOI | 10.6846/TKU.2021.00763 |
論文名稱(中文) | IEEE 802.11ax無線區域網路中最小化延遲時間的資源分配研究 |
論文名稱(英文) | Resource Allocation for Minimizing Delay in IEEE 802.11ax WLANs |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系資訊網路與多媒體碩士班 |
系所名稱(英文) | Master's Program in Networking and Multimedia, Department of Computer Science and Information Engine |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 109 |
學期 | 2 |
出版年 | 110 |
研究生(中文) | 陳佩妘 |
研究生(英文) | Pei-Yun Chen |
學號 | 608420054 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2021-07-05 |
論文頁數 | 40頁 |
口試委員 |
指導教授
-
石貴平(kpshih@mail.tku.edu.tw)
委員 - 陳彥達(ydchen@gm.lhu.edu.tw) 委員 - 王三元(sywang@isu.edu.tw) |
關鍵字(中) |
IEEE 802.11ax OFDMA 資源分配 傳輸延遲 WLANs |
關鍵字(英) |
IEEE 802.11ax OFDMA resource allocation transmission delay WLANs |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文針對無線區域網路(Wireless Local Area Networks, WLANs)中,現有的(Orthogonal Frequency Division Multiple Access, OFDMA)上傳機制所造成的傳輸延遲問題,提出有效的解決策略。現今隨著無線網路迅速發展,人們對於WLANs的需求越來越高,為了滿足使用者的需求,IEEE 802.11ax標準加入了OFDMA的機制,讓多個節點可以同時傳輸資料。而在IEEE 802.11ax上傳機制中,有兩種傳輸方式: 1)透過競爭的方式傳輸,2)透過AP調度的方式傳輸。這兩種傳輸方式皆可能出現後面要傳送資料的節點因傳輸延遲時間太長而造成封包丟棄的問題。因此本論文提出一種新的分配機制,用於解決節點傳輸延遲問題。此機制將選擇資料量較少的節點先分配傳輸。另外本論文亦提出一判斷方式以切割資料,來降低傳輸延遲時間。根據模擬結果顯示此機制可以有效降低傳輸延遲時間,並有效的提高網路的效能。 |
英文摘要 |
The paper proposes effective solutions to the transmission delay problem caused by the OFDMA (Orthogonal Frequency Division Multiple Access) uplink transmission delay in wireless local area networks (WLANs). Nowadays, with the rapid development of wireless networks, the demand for WLANs is getting higher and higher. To meet the needs of high traffic load, the IEEE 802.11ax standard adopts the OFDMA mechanism to allow multiple users to transmit at the same time. In IEEE 802.11ax uplink transmissions, there are two transmission methods: 1) Random Access (RA) and 2) Scheduled Access (SA). Both two transmission methods suffer the long transmission delay problem. Therefore, the paper proposes a new resource allocation mechanism to solve the long transmission delay problem. The proposed mechanism can select the node with a small amount of data to allocate resources first. Moreover, the proposed mechanism also designs a criterion to cut the data to reduce the transmission delay time. According to the simulation results, the proposed mechanism can effectively reduce the transmission delay time and improve the performance of the network. |
第三語言摘要 | |
論文目次 |
第1章 介紹 1 第2章 背景知識 13 第3章 最小化傳輸延遲問題模型建 17 第4章 傳輸延遲最小化RU分配方案(RU Allocation with Transmission Delay Minimization Scheme (RATDM)) 23 4.1理論基礎 23 4.2AP切割資料的方式 28 第5章 效能評估 31 5.1實驗場景及參數設定 31 5.2實驗結果 32 5.3實驗總結 35 第6章 結論 36 參考文獻 36 圖目錄 圖一、DL MU-OFDMA傳輸 2 圖二、TF的封包格式 3 圖三、UORA傳輸機制 4 圖四、AP所告知的傳輸時間較短 5 圖五、BSR傳輸 6 圖六、BSR的封包格式 6 圖七、BSR傳輸(padding) 7 圖八、OBSS圖 8 圖九、PSR操作時序圖 8 圖十、OPSR 操作時序圖 9 圖十一、SA RU和RA RU 操作時序圖 10 圖十二、OFDMA 13 圖十三、20MHz 頻道中的 RU 位置 15 圖十四、網路模型 17 圖十五、AP排程 19 圖十六、資料量較大的節點先分配RU 24 圖十七、資料量較小的節點先分配RU 25 圖十八、AP分配較小RU 26 圖十九、AP分配較大RU 27 圖二十、RATDM運作方式 29 圖二十一、AP選擇不同大小的RU分配網路延遲 32 圖二十二、AP選擇不同大小的RU分配網路效能 33 圖二十三,AP選擇不同節點先分配RU的網路延遲 34 圖二十四,AP選擇不同節點先分配RU的網路效能 35 表目錄 表一、不同頻寬的RU個數 14 表二、20 MHZ 頻段中可用的 RU 分配方案 14 表三、在20MHz中不同RU中的數據速率(Mbps) 15 表四、MCS的SNR門檻值 16 表五、符號的定義 18 表六、模擬參數[18] 31 |
參考文獻 |
[1]. I. Dolińska, M. Jakubowski, and A. Masiukiewicz, “New IEEE 802.11 HEW Standard Throughput per STA Analysis,” in Proceedings of the International Conference on Information and Digital Technologies (IDT 2019), Jun. 2019, pp. 118-123. [2]. E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications Surveys Tutorials, vol. 21, no. 1, first Luarter 2019, pp. 197–216. [3]. L. Lu, B. Li, M. Yang, et al. “Survey and Performance Evaluation of the Upcoming Next Generation WLAN Standard-IEEE 802.11ax,” Networking and Internet Architecture, Jun. 2018, [Online]. Available: https://arxiv.org/abs/1806.05908. [4]. J. Lee, D.-J. Deng, and K.-C. Chen, “OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN,” in Proceedings of the International Wireless Communications & Mobile Computing Conference (IWCMC 2018), Limassol, Jun. 2018, pp. 188-193. [5]. J. Wang, M. Wu, L. Chen, Y. Zheng, and Y. Zhu, “Probability Complementary Transmission Scheme for Uplink OFDMA-based Random Access in 802.11ax WLAN,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2019), Apr. 2019, pp. 1-7. [6]. J. Kim, H. Lee and S. Bahk, “CRUI: Collision Reduction and Utilization Improvement in OFDMA-Based 802.11ax Networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM 2019), Dec. 2019, pp. 1-6. [7]. D. Xie, J. Zhang, A. Tang and X. Wang, “Multi-Dimensional Busy-Tone Arbitration for OFDMA Random Access in IEEE 802.11ax,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 4080-4094, Jun. 2020.Jorden Lee, “OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN ,” in Proceedings of the International Wireless Communications & Mobile Computing Conference (IWCMC 2018), 2018. [8]. K. Wang and K. Psounis, “Scheduling and Resource Allocation in 802.11ax,” in Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2018), Apr. 2018, pp. 279–287. [9]. R. M. Karthik and S. Palaniswamy, “Resource Unit (RU) Based OFDMA Scheduling in IEEE 802.11ax System,” in Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI 2018), Sep. 2018, pp. 1297-1302. [10]. K. Dovelos and B. Bellalta, ‘‘Optimal Resource Allocation in IEEE 802.11ax Uplink OFDMA with Scheduled Access,’’ in Networking and Internet Architecture, 2018, pp. 1–17, [Online]. Available: http://arxiv.org/abs/1811.00957. [11]. D. G. Filoso, R. Kubo, K. Hara, S. Tamaki, K. Minami, and K. Tsuji, “Proportional-based Resource Allocation Control with LoS Adaptation for IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2020), Jun. 2020, pp. 1-6. [12]. S. Kotera, B. Yin, K. Yamamoto, T. Nishio, M. Morikura, and H. Abeysekera, “Latency-Aware Fair Scheduling for Spatial Reuse in WLANs: A Lyapunov Optimization Approach,” in Proceedings of the 18th Annual IEEE Consumer Communications & Networking Conference (CCNC 2021), Jan. 2021, pp. 1-6. [13]. E. C. Rodrigues, A. Garcia-Rodriguez, L. G. Giordano, and G. Geraci, “On the Latency of IEEE 802.11ax WLANs with Parameterized Spatial Reuse,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM 2020), Dec. 2020, pp. 1-6. [14]. H. Lee, H. -S. Kim and S. Bahk, “LSR: Link-aware Spatial Reuse in IEEE 802.11ax WLANs,” in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2021), Apr. 2021, pp. 1-6. [15]. S. Avallone, P. Imputato, G. Redieteab, C. Ghosh, and S. Roy, “Will OFDMA Improve the Performance of 802.11 WiFi Networks?,” IEEE Wireless Communications, Jun. 2021, pp. 1-8. [16]. S. Bhattarai, G. Naik, and J. J. Park, “Uplink Resource Allocation in IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2019), May 2019, pp. 1–6. [17]. D. Bankov, A. Didenko, E. Khorov, and A. Lyakhov, “OFDMA Uplink Scheduling in IEEE 802.11ax Networks,” in Proceedings of the IEEE International Conference on Communications (ICC 2018), May 2018, pp. 1–6. [18]. M. Wu, J. Wang, Y. Zhu, and J. Hong, “High Throughput Resource Unit Assignment Scheme for OFDMA-based WLAN,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2019), Apr. 2019, pp.1–8. [19]. M. Ş. Kuran, A. Dilmac, Ö. Topal, B. Yamansavascilar, S. Avallone, and T. Tugcu, “Throughput-maximizing OFDMA Scheduler for IEEE 802.11ax Networks,” in Proceedings of the 31st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2020), Sep. 2020. [20]. A. Dutta, N. Gupta, S. Das, and M. Maity, “MMRU-ALLOC: An Optimal Resource Allocation Framework for OFDMA in IEEE 802.11ax,” in Proceedings of the 31st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2020), Sep. 2020. [21]. R. Grunheid, E. Bolinth, H. Rohling and K. Arzt, “Adaptive Modulation for the HIPERLAN2 Air interface,” in Proceedings of 5th International OFDM Workshop, Sep. 2000. [22]. B. Bellalta and K. Kosek-Szott, ‘‘AP-initiated multi-user transmissions in IEEE 802.11ax WLANs,’’ Ad Hoc Networks, vol. 85, pp. 145–159, Mar. 2019. [23]. Simone Merlin. OFDMA performance in 11ax. [Online]. Available: https://mentor.ieee.org/802.11/dcn/16/11-16-0379-00-00ax-trigger-frame-format.docx [24]. MATLAB R2020a and WLAN System Toolbox v2.0. Available: https://www.mathworks.com/products/matlab.html |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信