§ 瀏覽學位論文書目資料
系統識別號 U0002-2709202111453000
DOI 10.6846/TKU.2021.00761
論文名稱(中文) IEEE 802.11ax中基於OFDMA傳輸的動態TWT排程方案
論文名稱(英文) Dynamic Target Wake Time Scheduling for OFDMA Uplink Transmissions in IEEE 802.11ax WLANs
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 魏祥宇
研究生(英文) Hsiang-Yu Wei
學號 608410329
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-05
論文頁數 40頁
口試委員 指導教授 - 石貴平(kpshih@mail.tku.edu.tw)
共同指導教授 - 游國忠(gwojong.yu@gmail.com)
共同指導教授 - 陳彥達(ydchen@gm.lhu.edu.tw)
委員 - 石貴平(kpshih@mail.tku.edu.tw)
委員 - 陳彥達(ydchen@gm.lhu.edu.tw)
委員 - 王三元(sywang@isu.edu.tw)
關鍵字(中) TWT
IEEE 802.11ax
碰撞問題
動態排程方案
關鍵字(英) IEEE 802.11
WLANs
RU collision
TWT
第三語言關鍵字
學科別分類
中文摘要
本論文針對IEEE 802.11ax中的省電機制Target Wake Time(TWT),基於使用Orthogonal Frequency Division Multiple Access (OFDMA)傳輸的情況下若Access Point(AP)並未合理的安排節點甦醒順序,可能造成大量節點同時甦醒導致傳輸成功率下降問題。近年來物聯網裝置數量急速上升,許多能耗較低的物聯網裝置均使用電池驅動,且這些能耗較低的物聯網裝置通常並沒有大量傳輸資料的需求,綜合以上兩點許多物聯網裝置只在固定的時間點切換至甦醒模式,其餘時間均保持睡眠模式,當一個無線區域網路(WLANs)環境有許多裝置進入省電模式時,若AP沒有合理的安排裝置甦醒的時間,可能會導致許多裝置在同一時間甦醒,過多的裝置同時甦醒並參與競爭將導致傳輸成功率下降,許多學者透過排程的演算法來避免此問題的發生,但由於部分學者提出的機制假設過於強烈,不適用於現實場景,因此本論文提出一種動態的TWT排程方案,藉此解決上述之問題,也能夠提升(Resource Unit)RU的利用率以及提升網路效能。
英文摘要
This paper is aimed at the power saving mechanism Target Wake Time (TWT) in IEEE 802.11ax. Based on the use of Orthogonal Frequency Division Multiple Access (OFDMA) transmission, if the Access Point (AP) does not arrange the node wake-up sequence reasonably, it may cause a lot of The nodes to wake up at the same time, which leads to the problem of a decrease in the transmission success rate. In recent years, the number of IoT devices has increased rapidly. Many IoT devices with lower energy consumption are powered by batteries, and these low-energy IoT devices usually do not have the need to transmit a large amount of data. Combining the above two points, many IoT devices Only switch to wake-up mode at a fixed time point and stay in sleep mode for the rest of the time. When a wireless local area network (WLANs) environment has many devices enter power-saving mode, if the AP does not properly arrange the wake-up time of the device, it may be Many devices wake up at the same time. Too many devices wake up at the same time and participate in a competition, which will result in a decrease in the transmission success rate. Many scholars use scheduling algorithms to avoid this problem. However, the mechanism assumptions put forward by some scholars are too strong. Applicable to real-world scenarios, this paper proposes a dynamic TWT scheduling solution to solve the above-mentioned problems, and can also improve the utilization of (Resource Unit) RU and improve network performance.
第三語言摘要
論文目次
第1章	介紹	1
第2章	背景知識	9
2.1	UORA簡介	10
2.2	網路模型	11
2.3	問題陳述	12
2.4       相關研究	15
第3章	動態TWT排程機制	19
3.1	問題分析	20
3.2	容量值(α)	22
3.3	檢驗方案	25
3.4	動態TWT排程機制演算法	27
第4章	效能評估	32
4.1	實驗格式與場景設定	32
4.2	排程機制比較及評估	33
第5章	結論	37
參考文獻	37

圖目錄
圖一、Individual TWT流程示意圖 (圖片來源:Aruba Company IEEE 802.11ax White Paper)	2
圖二、 Broadcast TWT流程示意圖 (圖片來源:Aruba Company IEEE 802.11ax White Paper)	3
圖三、 Opportunistic TWT流程示意圖 (圖片來源:Aruba Company IEEE 802.11ax White Paper)	3
圖四、各項TWT模式	5
圖五、Individual TWT示意圖	6
圖六、網路模型示意圖	11
圖七、節點甦醒時間不平均	12
圖八、排程表示意圖	13
圖九、大量節點同時甦醒示意圖	14
圖十、TSS排程過程一	16
圖十一、TSS排程過程二	17
圖十二、TSS排程過程三	18
圖十三、TSS排程過程四	18
圖十四、Pattern變化示意圖	21
圖十五、a值計算示意圖	24
圖十六、TSS與DTSS排程示意圖	25
圖十七、β值計算示意圖	26
圖十八、DTSS排程示意圖	30
圖十九、各項排程演算法驗證及比較	34
圖二十、DTSS、TSS排程過程影響節點數量	35
圖二十一、DTSS、TSS排程差異比較	36

表目錄
表一、模擬參數	32
參考文獻
[1].	D. X. Yang, Y. Guo and O. Aboul-Magd, "802.11ax: The Coming New WLAN System with More Than 4x MAC Throughput Enhancement," in Proceedings of 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1-5, 2017. 
[2].	A. F. Rochim, B. Harijadi, Y. P. Purbanugraha, S. Fuad and K. A. Nugroho, "Performance comparison of wireless protocol IEEE 802.11ax vs 802.11ac," in Proceedings of 2020 International Conference on Smart Technology and Applications (ICoSTA), pp. 1-5, 2020. 
[3].	Z. Machrouh and A. Najid, "High Efficiency WLANs IEEE 802.11ax Performance Evaluation," in Proceedings of 2018 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1-5,2018. 
[4].	Q. Chen and Y. -H. Zhu, "Scheduling Channel Access Based on Target Wake Time Mechanism in 802.11ax WLANs,"IEEE Transactions on Wireless Communications,pp.1-1,2020.
[5].	E. Stepanova, D. Bankov, E. Khorov and A. Lyakhov, "On the Joint Usage of Target Wake Time and 802.11ba Wake-Up Radio," in IEEE Access, vol. 8, pp. 221061-221076, 2020.
[6].	D. Bankov, E. Khorov, A. Lyakhov and E. Stepanova, "Clock Drift Impact on Target Wake Time in IEEE 802.11ax/ah Networks," in Proceedings of 2018 Engineering and Telecommunication (EnT-MIPT), 2018, pp. 30-34,2018.
[7].	J. Wang, M. Wu, Q. Chen, Y. Zheng and Y. Zhu, "Probability Complementary Transmission Scheme for Uplink OFDMA-based Random Access in 802.11ax WLAN," in Proceedings of 2019 IEEE Wireless Communications and Networking Conference (WCNC),pp. 1-7, 2019. 
[8].	S. Bhattarai, G. Naik and J. J. Park, "Uplink Resource Allocation in IEEE 802.11ax," in Proceedings of ICC 2019 IEEE International Conference on Communications (ICC), pp. 1-6,2019 
[9].	J.Bai, H.Fang,J.Suh, O.Aboul-Magd, E.Au,X.Wang,"Adaptive Uplink OFDMA Random Access Grouping Scheme for Ultra-Dense Networks in IEEE 802.11ax ," in Proceedings of : 2018 IEEE/CIC International Conference on Communications in China (ICCC),pp. 2377-8644
[10].	J. Lee, "OFDMA-based Hybrid Channel Access for IEEE 802.11ax WLAN," in Proceedings of 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 188-193, 2018. 
[11].	D. Deng et al, "IEEE 802.11ax: Highly Efficient WLANs for Intelligent Information Infrastructure," IEEE Communications Magazine, vol. 55, no. 12, pp. 52-59, Dec. 2017.
[12].	E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, "A tutorial on IEEE 802.11ax high efficiency WLANs, " IEEE Commun. Surv, vol. 21, no. 1, pp. 197–216, 2018.
[13].	G. Z. Islam and M. A. Kashem, "An OFDMA-based New MAC Mechanism for IEEE 802.11ax," in Proceedings of Systems and Security (NSysS), pp. 1-7, 2018
[14].	K. Lee, "Using OFDMA for MU-MIMO User Selection in 802.11ax-Based Wi-Fi Networks," in IEEE Access, vol. 7, pp. 186041-186055, 2019.
[15].	Y. Heo, J. Jang, Y. Kim and H. J. Yang, "Performance Comparison of SU- and MU-MIMO in 802.11ax: Delay and Throughput," in Proceedings of 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 879-882, 2020.
[16].	H. Yang, D. Deng and K. Chen, "On Energy Saving in IEEE 802.11ax," in IEEE Access, vol. 6, pp. 47546-47556, 2018.
[17].	H. Yang, D. Deng and K. Chen, "Performance Analysis of IEEE 802.11ax UL OFDMA-Based Random Access Mechanism," in Proceedings of GLOBECOM  2017 IEEE Global Communications Conference, pp. 1-6,2017.
[18].	D.Xie, J.Zhang, A.Tang and X. Wang, "Multi-Dimensional Busy-Tone Arbitration for OFDMA Random Access in IEEE 802.11ax," IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 4080-4094, June 2020.
[19].	Q. Chen, Z. Weng, X. Xu and G. Chen, "A Target Wake Time Scheduling Scheme for Uplink Multiuser Transmission in IEEE 802.11ax-Based Next Generation WLANs," in IEEE Access, vol. 7, pp. 158207-158222, 2019.
[20].	Q. Chen, G. Liang and Z. Weng, "A Target Wake Time Based Power Conservation Scheme for Maximizing Throughput in IEEE 802.11ax WLANs," in Proceedings of 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 217-224, 2019.
論文全文使用權限
校內
校內紙本論文延後至2026-09-25公開
同意電子論文全文授權校園內公開
校內電子論文延後至2026-09-25公開
校內書目立即公開
校外
同意授權予資料庫廠商
校外電子論文延後至2026-09-25公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信