系統識別號 | U0002-2709202110250100 |
---|---|
DOI | 10.6846/TKU.2021.00759 |
論文名稱(中文) | 下一代無線區域網路下用於實時應用之低延遲網路媒介存取控制協定設計 |
論文名稱(英文) | Dynamic Uplink OFDMA Resource Allocations for Real-Time Applications in IEEE 802.11be WLANs |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系資訊網路與多媒體碩士班 |
系所名稱(英文) | Master's Program in Networking and Multimedia, Department of Computer Science and Information Engine |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 109 |
學期 | 2 |
出版年 | 110 |
研究生(中文) | 林暉恩 |
研究生(英文) | Hui-En Lin |
學號 | 608420047 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2021-07-05 |
論文頁數 | 41頁 |
口試委員 |
指導教授
-
石貴平(kpshih@mail.tku.edu.tw)
委員 - 陳彥達(ydchen@mail.lhu.edu.tw) 委員 - 王三元(sywang@isu.edu.tw) |
關鍵字(中) |
IEEE 802.11be 封包延遲 服務品質 實時應用 WLANs |
關鍵字(英) |
IEEE 802.11be Latency QoS (Quality of Service) Real-Time Applications (RTA) WLANs |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文針對實時應用(Real-Time Applications, RTA)裝置在存取網路媒介時所遭遇到的延遲過高問題,提出有效的改善策略。近年來由於實時應用的崛起,這些應用已大量的出現在我們的生活周遭,然而無線區域網路中時常有干擾以及壅塞,這些設備可能會因為存取網路媒介時產生競爭失敗或資料碰撞等問題,導致延遲提升,無法滿足實時應用封包的延遲要求。為此,下一代無線區域網路(Wireless Local Area Networks, WLANs)標準-IEEE 802.11be將降低實時應用的無線區域網路設備延遲問題視為制定協議的主要目標之一。因此本論文針對RTA節點存取網路媒介時延遲過高的問題進行探討,並透過預先分配網路資源的思路設計出一媒體存取控制協議,簡稱為Dynamic Uplink OFDMA Resource Allocations (DURA) MAC,以解決實時應用裝置在存取網路媒介時的延遲問題。DURA的特色是可讓無線存取點(Wireless Access Point, WAP)在擁有網路環境資訊時,提供RTA節點免競爭的網路媒介存取方式,讓RTA節點可以將資料封包優先送出,以降低RTA節點的延遲。另外,本論文也透過MATLAB進行模擬並與其他相關研究進行比較,結果顯示DURA的效能在密集網路環境中皆優於IEEE 802.11ax隨機存取機制和相關研究,並能滿足RTA節點的延遲要求。 |
英文摘要 |
This paper proposes effective strategies to improve the high latency problem encountered by Real-Time Ap-plications (RTA) devices when accessing media. In recent years, due to the rise of real-time applications, a large number of RTA applications have appeared in our lives. Due to interference and congestion in wireless local area networks (WLANs), RTA may face competition fail-ure or data collision when accessing the media, which will cause the delay to increase and the QoS (Quality of Service) requirements of RTA cannot be satisfied. To this end, the standard of the next-generation WLANs-IEEE 802.11be regards reducing the latency of RTA applica-tions as one of the main goals of the standard. Therefore, the paper takes the problem of excessive delay when RTA applications access media into consideration and designs a MAC (Media Access Control) protocol, named Dynam-ic Uplink OFDMA Resource Allocations (DURA), to deal with the problem. The idea of DURA is to allocate net-work resources to RTA applications in advance such that the contention and interference can be reduced and the latency of RTA applications can be shortened as well. The feature of DURA is that when the wireless access point (WAP) has the requirements of the RTA applica-tions, WAP can let these RTA applications access media without contention to reduce the latency of the RTA ap-plications. To verify the effectiveness of DURA, the paper also conducts simulations by means of MATLAB. Simu-lation results show that the performance of DURA is bet-ter than those of the IEEE 802.11ax random access mechanism and related research in dense network envi-ronments. Moreover, DURA can also meet the latency requirements of RTA applications. |
第三語言摘要 | |
論文目次 |
第1章 介紹 1 第2章 背景知識 4 2.1資料延遲約束(Data Latency Constraint) 4 2.2封包到達週期 (Packet Flow Rate) 7 2.3相關工作 8 第3章 設計理念及假設 14 3.1相關假設 14 3.2設計理念 15 第4章 用於實時應用之低延遲網路媒介存取控制協議(DURA) 17 4.1高延遲要求優先服務(High DLC First Allocation, HDFA) 17 4.2資料傳輸周期延長 (Increase TXOP Duration, ITD) 19 4.3單RU多節點分配 (Multiple STAs in One RU, MSOR) 22 4.4調整封包大小(Packet Size Adjustment, PSA) 26 第5章 效能評估 29 5.1模擬場景與參數 29 5.2實驗結果 30 第6章 結論 38 參考文獻 39 圖目錄 圖一、RTA節點競爭失敗問題(FCP)示意圖 2 圖二、RTA節點傳輸失敗問題(FTP)示意圖 3 圖三、RTA節點封包延遲發生區域示意圖 4 圖四、RTA節點封包到達週期示意圖 7 圖五、多頻道操作示意圖 8 圖六、多頻道操作用於增加傳輸效能示意圖 9 圖七、多頻道操作用於增加傳輸可靠性示意圖 9 圖八、Default EDCA parameter set 10 圖九、增加RTA等級的EDCA parameter set 10 圖十、OFDMA示意圖 11 圖十一、GRA演算法分配結果示意圖 12 圖十二、IEEE 802.11ax RU可分配個數類型[8] 12 圖十三、GRA演算法碰撞示意圖 13 圖十四、協議基本運作 15 圖十五、RTG節點優先分配示意圖 18 圖十六、新增傳輸機會時間Tt2示意圖 19 圖十七、Trigger Frame format[1] 20 圖十八、User info format[1] 20 圖十九、單個RU分配兩個節點示意圖 22 圖二十、封包同時到達區間示意圖 23 圖二十一、封包同時到達區間內資料碰撞示意圖 23 圖二十二、分配RTV節點示意圖 24 圖二十三、封包同時到達區間對比示意圖 24 圖二十四、未進入PSA前分配結果示意圖 26 圖二十五、透過PSA調整後的分配結果示意圖 27 圖二十六、分配策略流程圖 28 圖二十七、ITD和MSOR搭配PSA延遲對比 30 圖二十八、ITD和MSOR搭配PSA效能對比 31 圖二十九、MSOR和GRA的延遲對比 32 圖三十、MSOR和GRA的效能對比 33 圖三十一、ITD和GRA的延遲對比 34 圖三十二、ITD和GRA的效能對比 35 圖三十三、模擬延遲效能 36 圖三十四、模擬傳輸效能 37 表目錄 表一、實時應用於基本服務集內部延遲要求 6 表二、RTA參數 15 表三、模擬參數 29 表四、分配策略代號 30 |
參考文獻 |
[1]. "IEEE Draft Standard for Information Technology -- Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks -- Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment Enhancements for High Efficiency WLAN," in IEEE P802.11ax/D6.0, November 2019, vol., no., pp.1-780, 14 Dec. 2019. [2]. E. Avdotin, D. Bankov, E. Khorov, and A. Lyakhov, “Enabling Massive Real-Time Applications in IEEE 802.11be Networks,” in Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2019), 8-11 Sep. 2019, pp. 1-6. [3]. S. Naribole, W. B. Lee, S. Kandala, and A. Ranganath, “Simultaneous Transmit-Receive Multi-Channel Operation in Next Generation WLANs,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2020), 2020, pp. 1-8 [4]. D. Bankov, E. Khorov, A. Lyakhov, and M. Sandal, “Enabling Low Latency Communications in Wi-Fi Networks,” in Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2018), 9-12 Sep. 2018, pp. 598-599. [5]. B. Bellalta, “IEEE 802.11ax: High-efficiency WLANS,” IEEE Wireless Communications, vol. 23, no. 1, pp. 38-46, 2016. [6]. S. Bhattarai, G. Naik, and J. J. Park, “Uplink Resource Allocation in IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2019), 20-24 May 2019, pp. 1-6. [7]. D. Deng, S. Lien, J. Lee, and K. Chen, “On Quality-of-Service Provisioning in IEEE 802.11ax WLANs,” IEEE Access, vol. 4, pp. 6086-6104, 2016. [8]. E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A Tutorial on IEEE 802.11ax High Efficiency WLANs,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 197-216, 2019. [9]. E. Khorov, I. Levitsky, and I. F. Akyildiz, “Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7,” IEEE Access, vol. 8, pp. 88664-88688, May 2020. [10]. J. Kim, H. Lee, and S. Bahk, “CRUI: Collision Reduction and Utilization Improvement in OFDMA-Based 802.11ax Networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM 2019), 9-13 Dec. 2019, pp. 1-6. [11]. L. Lanante, H. O. T. Uwai, Y. Nagao, M. Kurosaki, and C. Ghosh, “Performance Analysis of the 802.11ax UL OFDMA Random Access Protocol in Dense Networks,” in Proceedings of the IEEE International Conference on Communications (ICC 2017), 21-25 May 2017, pp. 1-6. [12]. D. Lopez-Perez, A. Garcia-Rodriguez, L. Galati-Giordano, M. Kasslin, and K. Doppler, “IEEE 802.11be Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax,” IEEE Communications Magazine, vol. 57, no. 9, pp. 113-119, 2019. [13]. G. Naik, S. Bhattarai, and J. Park, “Performance Analysis of Uplink Multi-User OFDMA in IEEE 802.11ax,” in Proceedings of the IEEE International Conference on Communications (ICC 2018), 20-24 May 2018, pp. 1-6. [14]. G. Naik, J. M. Park, J. Ashdown, and W. Lehr, “Next Generation Wi-Fi and 5G NR-U in the 6 GHz Bands: Opportunities and Challenges,” IEEE Access, vol. 8, pp. 153027-153056, 2020. [15]. H. Wu, X. Wang, Q. Zhang, and X. Shen, “IEEE 802.11e Enhanced Distributed Channel Access (EDCA) Throughput Analysis,” in Proceedings of the IEEE International Conference on Communications (ICC 2006), 11-15 Jun. 2006, vol. 1, pp. 223-228. [16]. M. Wu, J. Wang, Y. Zhu, and J. Hong, “High Throughput Resource Unit Assignment Scheme for OFDMA-based WLAN,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2019), 15-18 Apr. 2019, pp. 1-8. [17]. IEEE 802.11 Latency Analysis for EHT. [Online]. Available: https://mentor.ieee.org/802.11/dcn/19/ 11-19-0762-01-00be-latency-analysis-for-eht.pptx, Jul. 2019. [18]. IEEE 802.11 Real Time Applications TIG Report. [Online]. Available: https://mentor.ieee.org/802.11/ dcn/18/11-18-2009-06-0rtarta-report-draft.docx, Nov. 2018. [19]. 802.11 EHT Proposed PAR. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1231-04-0eht-eht-draft-proposed-par.docx, Jan. 2019. [20]. Discussion on Target Use Cases. [Online]. Available: https://mentor.ieee.org/802.11/dcn/18/11-18-1978-04-0rtadiscussion-on-target-use-cases-of-rta.pptx, Nov. 2018. [21]. “Considerations of New Queue Mechanism for Real-Time Application,” Available: https://mentor.ieee.org/802.11/dcn/19/11-19-1175-00-00be-considerations-of-new-queue-mechanisms-for-real-time-applications.pptx, Jul. 2019. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信