系統識別號 | U0002-2708202212014900 |
---|---|
DOI | 10.6846/TKU.2022.00790 |
論文名稱(中文) | 微針載體製備及量產方法 |
論文名稱(英文) | Microneedle carrier preparation and mass production method |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 理學院應用科學博士班 |
系所名稱(英文) | Doctoral Program in Applied Sciences |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 110 |
學期 | 2 |
出版年 | 111 |
研究生(中文) | 吳胤均 |
研究生(英文) | Yin-Jun Wu |
學號 | 808230014 |
學位類別 | 博士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2022-07-20 |
論文頁數 | 117頁 |
口試委員 |
指導教授
-
王伯昌(bcw@mail.tku.edu.tw)
口試委員 - 李錫隆 口試委員 - 呂世伊 口試委員 - 陳銘凱 口試委員 - 鄧金培 |
關鍵字(中) |
微針 3D列印 增材製造 積層製造 大氣電漿 等向性蝕刻 |
關鍵字(英) |
microneedle 3D print three-dimensional print additive manufactur Atmospheric-pressure plasma Isotropic etch |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文的研究方向是欲解決市面無法量產微針載體及無法控制釋放效率問題。就製備方法而言,目前全世界99%專利皆採用以MEMS微機電設備的光蝕刻製造技術,並透過PDMS無毒高分子材料翻脫膜;而本論文的製造技術為一種微針載體之製備方法,具備擁有量產技術且多樣化設計的dMNs整合技術,有別於以往PDMS翻模技術,本技術利用高解析度3D列印機工藝技術及光固化設備製備微針模具;任何不同形狀、大小、曲度、皮膚貼注處模具,皆可透過3D設計客製化設計及生產,簡單、快速且精準。透過大氣電漿法技術改變模具表面之親疏水性,再將有機高分子和無機高分子、多糖體等混合成的配方形成於模具之多個孔洞內,增加塗佈效益,進而乾燥脫膜後得到高良率微針半成品,可大量生產混合型、囊孔型微針貼片且製造成本低;最後再利用大氣電漿蝕刻技術進行等向性蝕刻,調整針高及孔洞深度,產生囊孔型及不同需求針型以製備每根不超過1000微米長度的微針,可有效量產製造混合型及囊孔型微針做為醫美、醫藥及疫苗之載體。 |
英文摘要 |
The research direction of this thesis is to solve the problem that the microneedle carrier cannot be mass-produced in the market and the release efficiency cannot be controlled. As far as the preparation method is concerned, 99% of the patents in the world currently use the photo-etching manufacturing technology of MEMS micro-electromechanical equipment, and the film is removed through PDMS non-toxic polymer material; and the manufacturing technology of this paper is a preparation method of a microneedle carrier. , has the dMNs integration technology with mass production technology and diversified design, which is different from the previous PDMS mold turning technology. This technology uses high-resolution 3D printer technology and light curing equipment to prepare microneedle molds; any shape, size , curvature, and skin sticking molds can be customized and produced through 3D design, which is simple, fast and accurate. The hydrophilicity and hydrophobicity of the surface of the mold is changed by the atmospheric plasma method, and then the formula formed by mixing organic polymers, inorganic polymers, polysaccharides, etc. is formed in multiple holes of the mold to increase the coating efficiency. High-yield semi-finished microneedles can be mass-produced with hybrid and capsular microneedle patches with low manufacturing cost; finally, atmospheric plasma etching technology is used for isotropic etching to adjust needle height and hole depth to produce capsular and Different types of needles are required to prepare microneedles with a length of no more than 1000 microns, which can effectively mass-produce hybrid and cystic microneedles as carriers for medical aesthetics, medicine and vaccines. |
第三語言摘要 | |
論文目次 |
目錄 頁次 謝誌 I 總目錄 V 圖目錄 VII 表目錄 VIII 第一章、序論 1-1前言 1 1-2一般藥物傳輸系統 3 1-3口服劑型 4 1-4注射劑型 6 1-5經皮輸送劑型 9 1-6疫苗起源 15 第二章、微針製造原理以及方法 2-1微針貼片 20 2-2固體微針(Solid microneedle) 21 2-3塗層型微針(Coated microneedle) 23 2-4中空型微針(Hollow microneedle) 26 2-5高分子聚合物微針(Polymer microneedle) 30 2-6微針製程 31 2-7鼓風拉伸風乾(Droplet-born air blowing, DAB) 31 2-8製模∕脫模反覆成形的技術(Polydimethylsiloxane, PDMS) 32 第三章、微針產業發展及3D列印發展趨勢 3-1微針產業發展趨勢 34 3-2專利檢索及分析(WIPS) 37 3-3列印工藝技術設計流程 40 3-4分子理論計算與原理 59 3-5研究動機與目的 61 第四章、研究設備與工具 4-1儀器設備 62 4-2實驗材料 69 第五章、微針載體製備與量產方法 5-1簡介 76 5-2微針模具製備方法 80 5-3微針模具改質實驗方法 84 5-4溶解型微針貼片製備方法 86 5-5囊孔型微針貼片製備方法 89 5-6微針貼片之豬皮穿刺實驗 105 第六章、結論 106 參考資料 108 圖目錄 圖1-1 藥物傳輸系統 3 圖1-2 皮膚構造示意圖 11 圖1-3 微針長度對於疼痛感的影響 12 圖1-4 微針厚度與寬度對疼痛感的影響 12 圖1-5 微針尖角對疼痛感的影響 13 圖1-6 定製化的微針疫苗貼片 16 圖1-7 無需電池的電穿孔注射器 18 圖1-8 ePatch疫苗注射器的設計原理圖 19 圖2-1 由(a-d)矽、(e-h)金屬和(i-l)聚合物製成的實心微針 22 圖2-2 塗層微針示意圖 25 圖2-3 塗層型微針上的分子和微粒的寬度 25 圖2-4 中空型微針示意圖 27 圖2-5 中空型微針模擬繪圖 28 圖2-6 中空型微針SEM圖像 28 圖2-7 中空型微針的光學顯微照片 29 圖2-8 高分子聚合物微針 30 圖2-9 DAB微針製作技術 31 圖2-10 製模∕脫模反覆成形的技術 32 圖3-1 全球經皮給藥系統市場預測及技術分析 34 圖3-2 溶解型微針使用方式 35 圖3-3 微針製備方法專利技術分析 37 圖3-4 技術服務業應具備之技術能量 39 圖3-5 比較STO-1G、STO-2G、STO-3G不同基底函數與1s軌域的Slater函數近似程度 54 圖3-6 對於極性分子系統的軌域型態,用加入額外軌域型態函數來加以修正 57 圖4-1 Nobel Superfine3D列印機 64 圖4-2 MultiCure180光固化機 66 圖4-3 DesignSpark Mechanical 68 圖4-4 聚乙烯醇化學結構圖 69 圖4-5 完全醇解PVA及部分醇解PVA 70 圖4-6 PVA 3D Model image 71 圖4-7 PVA Van der Waals Spheres 71 圖4-8 PVA Measurement Distance 71 圖4-9 PVA Measurement Angle 71 圖4-10 PVA Molecular Electrostatic Potential (MEP) 71 圖4-11 PVA Calculations Charge 71 圖4-12 PVA Bond dipoles and overall dipole 72 圖4-13 聚乙烯吡咯烷酮化學結構圖 73 圖4-14 PVP 3D Model image 74 圖4-15 PVP Van der Waals Spheres 74 圖4-16 PVP Measurement Distance 75 圖4-17 PVP Measurement Angle 75 圖4-18 PVP Molecular Electrostatic Potential (MEP) 75 圖4-19 PVP Calculations Charge 75 圖4-20 PVP Bond dipoles and overall dipole 75 圖5-1 微針載體製備與量產流程圖 77 圖5-2 混合型微針陣列製備方法 78 圖5-3 囊孔型微針陣列製備方法 79 圖5-4 微針模具製備方法 80 圖5-5 微針眼膜電子設計圖 81 圖5-6 XYZware Nobel軟體等比例大小調整 81 圖5-7 列印樹脂材料選擇 82 圖5-8 3D列印模板厚度以及解析度選擇 83 圖5-9 大氣電漿技術改變微針模具極性示意圖 85 圖5-10 大氣電漿技術改變微針孔洞示意圖 90 圖5-11 使用9.8牛頓力量垂直下壓示意圖 90 圖5-12 眼膜形狀微針模具基底設計圖 91 圖5-13 不同需求針型微針針型設計圖(A)羽毛球針型(B)子彈型針型 91 圖5-14 不同孔洞大小、不同密度及不同形狀微針模具設計圖 93 圖5-15 微針模具實拍圖 95 圖5-16 微針模具於顯微鏡下影像圖 95 圖5-17 大氣電漿後模具親疏水性比前後比較 96 圖5-18 聚乙烯醇可溶式微針於不同倍率之顯微鏡影像 微針模板尺寸:200 µm、200 µm、200 µm 97 圖5-19 聚乙烯醇可溶式微針於不同倍率之顯微鏡影像 微針模板尺寸:300 µm、300 µm、300 µm 98 圖5-20 聚乙烯醇可溶式微針於顯微鏡之影像 300 µm、300 µm、600 µm 99 圖5-21 聚乙烯醇可溶式微針於顯微鏡之影像 微針模板尺寸:600 µm、600 µm、600 µm 100 圖5-22 聚乙烯醇可溶式微針於顯微鏡之影像 微針模板尺寸:600 µm、600 µm、1000 µm 101 圖5-23 聚乙烯醇可溶式微針於顯微鏡之影像/囊孔型微針貼片影像 微針模板尺寸:600 µm、600 µm、1000 µm 102 圖5-24 不同參數設定下的大氣電漿蝕刻處理後的微針貼片 103 圖5-25 囊孔型微針貼片(A)大氣電漿蝕刻處理過後的囊孔型微針貼片背面顯微鏡圖像。(B)染色囊孔型微針貼片顯微鏡圖像。 105 圖5-26 螺旋型微針 105 圖5-27 蝦殼素集中於針尖微針 105 圖5-28 豬皮穿刺圖 106 表目錄 表4-1 C2H4O之分子模擬結果 70 表4-2 C2H4O分子組成百分比 70 表4-3 C6H9NO之分子模擬結果 74 表4-4 C6H9NO分子組成百分比 74 |
參考文獻 |
參考資料 [1] Scully, C., Miller, C.S., Urizar, J.-M.A., Alajbeg, I., Almeida, O.P.D., Bagan, J.V., Birek, C., Chen, Q., Farah, C.S., Figueirido, J.P., Hasséus, B., Jontell, M., Kerr, A.R., Laskaris, G., Muzio, L.L., Mosqueda-Taylor, A., Nagesh, K.S., Nikitakis, N.G., Peterson, D., Sciubba, J., Thongprasom, K., Tovaru, Ş., Zadik, Y.. Oral medicine (stomatology) across the globe: birth, growth, and future. Or Surg or Med or Pa 2016, 121 (2), 149-157. [2] Esteban-Fernandez, A., Rocha-Alcubilla, N., Munoz-Gonzalez, C., Moreno-Arribas, M.V., Pozo-Bayon, M. Á., Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure. Food Chem 2016, 205, 280-288. [3] Brailo, V., Firriolo, F.J., Tanaka, T.I., Varoni, E., Sykes, R., McCullough, M., Hua, H., Sklavounou, A., Jensen, S.B., Lockhart, P.B., Mattsson, U., Jontell, M.. World Workshop on Oral Medicine VI: Utilization of Oral Medicine-specific software for support of clinical care, research, and education: current status and strategy for broader implementation. Or Surg or Med or Pa 2015, 120 (2), 172-184. [4] Kaunitz, A.M., MD. Progestin-only pills (POPs) for contraception. UpToDate 2022. [5] Pattani, A., McKay, P.F., Garland, M.J., Curran, R.M., Migalska, K., Cassidy, C.M., Malcolm, R.K., Shattock, R.J., McCarthy, H.O., Donnelly, R.F. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J. Control. Release 2012, 162 (3), 529-537. [6] Donnelly, R.F., Singh, T.R.R., Garland, M.J., Migalska, K., Majithiya, R., McCrudden, C.M., Kole, P.L., Mahmood, T.M.T., McCarthy, H.O., Woolfson, A.D. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv Funct Mater 2012, 22(23), 4879-4890. [7] Wanner, M., Sakamoto, F.H., Avram, M.M., Chan, H.H., Alam, M., Tannous, Z., Anderson, R.R.. Immediate skin responses to laser and light treatments Therapeutic endpoints: How to obtain efficacy. J Am Acad Dermatol 2016, 74 (5), 821-833. [8] Field, T. Massage therapy research review. Complement Ther Clin 2014, 20 (4),224-229. [9] Hong, X., Wei, L., Wu, F., Wu, Z., Chen, L., Liu, Z., Yuan, W. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Dev Ther 2013, 7, 945-952. [10] Moga, K.A., Bickford, L.R., Geil, R.D., Dunn, S.S., Pandya, A.A., Wang, Y., Fain, J.H., Archuleta, C.F., O'Neill, A.T., DeSimone, J.M. Rapidly-Dissolvable Microneedle Patches Via a Highly Scalable and Reproducible Soft Lithography Approach. Adv. Mater 2013, 25 (36), 5060-5066. [11] Jo, H., Brito, S., Kwak, B.M., Park, S., Lee, M.-G., Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. International Journal of Molecular Sciences 2021, 22(5):2410. [12] Kaushik, S., Hord, A.H.,Denson, D.D., McAllister, D.V., Smitra, S., Allen, M.G., Prausnitz, M.R. Lack of pain associated with microfabricated microneedles. Anesth. Analg, 2001, pp. 502-504. [13] Gill, H.S., Denson, D.D. Burris, B.A., Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. J. Pain 2008, Vol.24, pp. 585-594. [14] Gupta, J., Park, S.S., Bondy, B., Felner, E.I., Prausnitz, M.R. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomater 2011, 32(28):6823-31. [15] Bal, S.M., Caussin, J., Pavel, S., Bouwstra, J.A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm 2008, 2;35(3):193-202. [16] Hutin, Y., Hauri, A., Chiarello, L., Catlin, M., Stilwell, B., Ghebrehiwet, T., Garner, J. Members Injection, Safety, best infection control practices for intradermal, subcutaneous, and intramuscular needle injections. Bull World Health Organ 2003, 81(7): 491–500. [17] Donnelly, R.F., Singh, T.R.R. Tunney, M.M., Morrow, I. J., McCarron, P.A., O’Mahony, C., Woolfson1, A.D. Microneedle Arrays Allow Lower Microbial Penetration Than Hypodermic Needles In Vitro. Pharm. Res 2010, 26(11): 2513–2522. [18] Zeng, W., Wang, Q., Wang, Y., Zhao, C., Li, Y., Shi, C., Wu, S., Song, X., Huang, Q., Li, S. Immunogenicity of a cell culture-derived inactivated vaccine against a common virulent isolate of grass carp reovirus. Fish Shellfish Immunol 2016, 54, 473-480. [19] Shi S, Chen S, Han W, Wu B, Zhang X, Tang Y, Wanga X, Zhua Y, Penga D, Liu X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2016, 34 (3), 350-357. [20] Vzorov, A.N., Wang, L., Chen, J.J., Wang, B.Z., Compans, R.W. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology 2016, 489, 141-150. [21] Zeng, Z., Dai, S., Jiao, Y., Jiang, L., Zhao, Y., Wang, B., Zong, L. Mannosylated protamine as a novel DNA vaccine carrier for effective induction of anti-tumor immune responses. Int. J. Pharm 2016, 506 (1-2), 394-406. [22] Zhang Jianling, 未來疫苗注射可用微針高分子貼片,可定製、無需冷藏. 雅式橡塑網 2021. [23] Conn Hastings, Vaccine Delivery Device Inspired by BBQ Lighter. Medgadget 2021. [24] Donnelly, R.F., Singh, T.R.R., Woolfson, A.D. Microneedle-based drug delivery systems:Microfabrication, drug delivery, and safety. Drug Delivery, 2010; 17(4): 187–207. [25] McAlister, E., Kirkby, M., Donnelly, R.F. 6-Microneedles for drug delivery and monitoring. Woodhead Publishing Series in Biomaterials 2021. Pages 225-260. [26] Verbaan, F.J., Bal, S.M., Berg, D.J.V.D., Groenink, W.H.H., Verpoorten, H., Lüttge, R., Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release., February 2007, Pages 238-245. [27] Niinomi1, M., Nakai1, M.,Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int J Biomater 2011, 2011:836587. [28] Jin, C.Y., Han, M.H., Lee, S.S., Choi, Y.H. Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery. Biomed. Microdevices 2009, 11 (6), 1195-1203. [29] Ami, Y., Tachikawa, H., Takano, N., Miki, N. Formation of polymer microneedle arrays using soft lithography. J Micro-Nanolith Mem 2011, 10 (1), 011503. [30] Bystrova, S., Luttge, R.. Micromolding for ceramic microneedle arrays.Microelectron Eng 2011, 88 (8), 1681-1684. [31] Zhou, CP., Liu, YL., Wang, H.L., Zhang, P.X., Zhang, J.L. Transdermal delivery of insulin using microneedle rollers in vivo. Int. J. Pharm 2010, 392 (1-2), 127-133. [32] Aldawood, F.K. Andar, A., Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021. [33] Ingrole, R.S.J., Gill, H.S. Microneedle Coating Methods: A Review with a Perspective.J Pharmacol Exp Ther 2019 Sep; 370(3): 555–569. [34] Maaden, K., Sekerdag, E., Schipper, P., Kersten, G., Jiskoot, W., Bouwstra, J. Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination. Langmuir 2015, 31 (31), 8654-8660. [35] Kim, Y.C., Song, J.M., Lipatov, A.S., Choi, S.O., Lee, J.W., Donis, R.O., Compans RW, Kang SM, Prausnitz MR. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 2012, 81 (2), 239-247. [36] Luangveera, W., Jiruedee, S., Mama, W., Chiaranairungroj, M., Pimpin, A., Palaga, T., Srituravanich, W. Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed 2015, 50, 77-81. [37] Chen, X.F., Prow, T.W., Crichton, M.L., Jenkins, D.W.K., Roberts, M.S., Frazer, I.H., Fernando, G.J., Kendall, M.A. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J. Controlled Release 2009, 139 (3), 212-220. [38] Gill, H.S., Prausnitz, M.R. Coated microneedles for transdermal delivery. J Control Release 2007, 12; 117(2): 227–237. [39] Jung, J.H., Jin, S.G. Microneedle for transdermal drug delivery: current trends and fabrication.J Pharm Investig 2021 Mar 4 : 1–15. [40] Lee, K., Lee, H.C., Lee, D.S., Jung, H. Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle. Adv. Mater 2010, 22 (4), 483-486. [41] Kim, Y.C., Park, J.H., Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv Drug Deliver Rev 2012, 64 (14), 1547-1568. [42] Wang, P.-C., Wester, B.A., Rajaraman, S., Paik, S.-J., Kim, S.-H., Allen, M.G. Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique. Annu Int Conf IEEE Eng Med Biol Soc 2009, 7026-9. [43] Vrdoljak, A., Allen, E.A., Ferrara, F., Temperton, N.J., Crean, A.M., Moore, A.C. Induction of broad immunity by thermostabilised vaccines incorporated in dissolvable microneedles using novel fabrication methods. J. control. release 2016, 225, 192-204. [44] Kim, J.D., Kim, M., Yang, H., Lee, K., Jung, H., Droplet-born air blowing: novel dissolving microneedle fabrication, Journal of Controlled Release 2013, 170, 430-436. [45] Lin, Y.-H., Lee, I.-C., Hsu, W.-C., Hsu, C.-H., Chang, K.-P., Gao, S.-S. Rapid fabrication method of a microneedle mold with controllable needle height and width, Biomedical Microdevices 2016 18(5), m85. [46] Krieger, K.J., Bertollo, N., Dangol, M., Sheridan, J.T., Lowery, M.M., O’Cearbhail, E.D. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsystems & Nanoengineering 2019, Article number: 42 . [47] Juang, Y.-J., Deng, Y.-L., Lee, I.-C. Membrane filtration: An unconventional route for fabrication of the flexible and dissolvable, polymer microneedle patches, Biomicrofluidics 2016, 10(4), 044108. [48] Yin, M., Xiao, L., Liu, Q., Kwon, S.-Y., Zhang, Y., Sharma, P.R., Jin, L., Li, X., Xu, B. 3D Printed Microheater Sensor-Integrated, Drug-Encapsulated Microneedle Patch System for Pain Management. Advanced Healthcare Materials 2019, 8 (23), Paper number 1901170. [49] Juang, Y.-J., Deng, Y.-L., Lee, I.-C. Membrane filtration: An unconventional route for fabrication of the flexible and dissolvable, polymer microneedle patches. Biomicrofluidics 2016, 10(4), 044108. [50] 劉大佼,葉修鋒:無痛遞藥新革命-微針貼片的進化史Scirtch Reports. 2019, Reference:http://scitechreports.blogspot.com/2019/03/blog-post_46.html [51] Anderson, A., Hegarty, C., Casimero, C., Davis, J. Electrochemically Controlled Dissolution of Nanocarbon−Cellulose Acetate Phthalate Microneedle Arrays. ACS Appl. Mater. Interfaces 2019, 11, 35540−35547. [52] Xu, J., Danehy, R., Cai, H., Ao, Z., Pu, M., Nusawardhana, A., Rowe-Magnus, D., Guo*, F. Microneedle Patch-Mediated Treatment of Bacterial Biofilms. ACS Appl. Mater. Interfaces 2019, 11, 14640−14646.] [53] Chen, Z., Lin, Y., Lee, W., Ren, L., Liu, B., Liang, L., Wang, Z., Jiang, L. Additive Manufacturing of Honeybee-Inspired Microneedle for Easy Skin Insertion and Difficult Removal. ACS Appl. Mater. Interfaces 2018, 10, 29338−29346. [54] Ren, L., Jiang, Q., Chen, Z., Chen, K., Xu, S., Gao, J., Jiang, L. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sensors and Actuators A Physical 2017, Pages 38-45. [55] Caudill, C.L., Perry, J.L., Tian, S., Luft, J.C., DeSimone, J.M. Spatially controlled coating of continuous liquid Interface production microneedles for transdermal protein delivery. Journal of Controlled Release 2018, 284, pp. 122-132. [56] Johnson, A.R., Caudill, C.L., Tumbleston, J.R., Bloomquist, C.J., Moga, K.A., Ermoshkin, A., Shirvanyants, D., Mecham, S.J., Luft, J.C., De Simone, J.M. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS ONE 2016, 11 (9), Paper number e0162518. [57] Economidou, S.N., Lamprou, D.A., Douroumis, D. 3D printing applications for transdermal drug delivery. International Journal of Pharmaceutics 2018, 544 (2), pp. 415-424. [58] Xenikakis, I., Tzimtzimis, M., Tsongas, K., Andreadis, D., Demiri, E., Tzetzis, D., Fatouros, D.G. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro, European Journal of Pharmaceutical Sciences 2019, 137, Paper number 104976. [59] Scott J Grunewald. Ultra-High Resolution 3D Printing at the Micro-Scale with Nanoscribe. 2016. [60] Luzuriaga, M.A., Berry, D.R., Reagan, J.C., Smaldone, R.A., Gassensmith, J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. From the journal:Lab on a Chip 2018, 18(8), pp. 1223-1230. [61] Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication 2017, 9(1):015010. [62] Economidou, S.N., Pere, C.P.P., Reid, A., Uddin, M.J., Windmill, J.F.C., Lamprou, D.A., Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery, Materials Science and Engineering C 2019, 102, pp. 743-755. [63] Camović, M., Biščević, A., Brčić, I., Borčak, K., Bušatlić, S., Ćenanović, N., Dedović, A., Mulalić, A., Osmanlić, M., Sirbubalo, M., Tucak, A., Vranić, E. Coated 3d printed pla microneedles as transdermal drug delivery systems, IFMBE Proceedings 2020, 73, pp. 735-742. [64] Mansor, N.H.A., Markom, M.A., Tan, E.S.M.M., Adom, A.H. Design and Fabrication of Biodegradable Microneedle Using 3D Rapid Prototyping Printer, Journal of Physics: Conference Series 2019, 1372 (1), Paper number 012053. [65] Moussi, K., Bukhamsin, A., Hidalgo, T., Kosel, J. Biocompatible 3D Printed Microneedles for Transdermal, Intradermal, and Percutaneous Applications. Advanced Engineering Materials 2019, Paper number 1901358. [66] IOP Publishing Scientists pioneer 3D-printed drug delivering micro-needles. 2015. [67] Yeung, C., Chen, S., King, B., Lin, H., King, K., Akhtar, F., Diaz, G., Wang, B., Zhu, J., Sun, W., Khademhosseini, A., Emaminejad, S. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics 2019, 13 (6), Paper number 064125. [68] 動脈網:透皮給藥系統全球市場將達814億美元,這20家企業都在努力。2017, Reference:https://kknews.cc/news/ogj2z3m.html. [69] Bhatnagar, S., Gadeela, P.R., Thathireddy, P., Venuganti, V.V.K. Microneedle-based drug delivery: materials of construction. Journal of Chemical Sciences 2019, 131(9), [70] 翁玟雯、陳宣雅、張展維、鄭奕帝:探討經皮輸藥系統之應用, Journal of Taiwan Pharmacy 2011, 27, 3. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信