系統識別號 | U0002-2707202200194600 |
---|---|
DOI | 10.6846/TKU.2022.00784 |
論文名稱(中文) | 比率相關Holling III型捕食者-獵物模型的數學分析 |
論文名稱(英文) | Mathematical Analysis of Ratio Dependent Predator-Prey Models with Holling Type III Functional Response |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 數學學系數學與數據科學碩士班 |
系所名稱(英文) | Master's Program, Department of Mathematics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 110 |
學期 | 2 |
出版年 | 111 |
研究生(中文) | 汪楷勛 |
研究生(英文) | Kai-Hsun Wang |
學號 | 608190160 |
學位類別 | 碩士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2022-07-13 |
論文頁數 | 10頁 |
口試委員 |
指導教授
-
楊定揮(tinghuiy@gmail.com)
口試委員 - 林建仲 口試委員 - 鄭凱仁 |
關鍵字(中) |
動力系統 生物數學 |
關鍵字(英) |
Dynamics System Mathematical Biology Ratio Dependent Models |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
在這項工作中,我們考慮了比率相關 Holling III 型捕食者-獵物模型,分析了該生態系統邊界平衡點及正平衡點的穩定性,最後詳細討論並給出了一些生物學解釋。 |
英文摘要 |
In this work, we consider Ratio Dependent Predator-Prey Models with Holling Type III and analysis the stabilities of boundary equilibria and positive equilibrium. Finally, a brief discussion and some biological interpretations are given. |
第三語言摘要 | |
論文目次 |
目錄 1. Introduction 1 2. Preliminary 3 3. Main Results 7 4. Conclusion, Remarks and Biological Implications 9 5. References 10 |
參考文獻 |
References [1] H. R. Akcakaya, R. Arditi, L. R. Ginzburg, Ratio-dependent prediction: an abstraction that works. Ecology, 76:995–1004, 1995. [2] R. Arditi, A. A. Berryman, The biological paradox, in Ecology and Evolution. 6:32, 1991. [3] R. Arditi and L. R. Ginzburg. Coupling in Predator-Prey Dynamics: Ratio-Dependenc. Journal of Theoretical Biology, 139:311–326, 1989. [4] R. Arditi, L. R. Ginzburg, H. R. Akcakaya. Variation in plankton densities among lakes: a case for ratio-dependent models, American Natrualist, 138:1287-1296 , 1991. [5] R Arditi, N. Perrin and H. Saiah, Functional responses and heterogeneities: an experimental test with cladocerans, Oikos, 60:69-75, 1991. [6] K. S. Chêng. Uniqueness of a limit cycle for a predator-prey system. SIAM Journal on Mathematical Analysis, 12(4):541–548, 1981. [7] C. Cosner, D. L. DeAngelis, J. S. Ault, D. B. Olson, Efects of spatial grouping on the functional response of predators. Theoretical Population Biololgy, 56:65–75, 1999. [8] H. I. Freedman and R. M. Mathsen Persistence in predator-prey systems with ratio-dependent predator infuence, Bulletin of Mathematical Biology, 55(4):817-827, 1993. [9] X. Wang, M. Peng, X. Liu. Stability and Hopf bifurcation analysis of a ratio-dependent predator–prey model with two time delays and Holling type III functional response. Applied Mathematics and Computation, 268:496–508, 2015. [10] Edoardo Beretta, Y. Kuang. Global analysis in some delayed ratiodependent predator-prey systems. Nonlinear Analysis, Theory, Method & Application, 32(3):381–408, 1998. [11] I. Hanski, The functional response of predator: worries about scale, Tree, 6:141-142, 1991. [12] Sze-Bi Hsu, Tzy-Wei Hwang. Yang-Kuang. Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system. Journal of Mathematical Biology, 42:489–506, 2001. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信