§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2608201915393500
DOI 10.6846/TKU.2019.00900
論文名稱(中文) 高比面積氯化銀的製造暨染料降解與殺菌研究
論文名稱(英文) Study on the manufacture of high specific area silver chloride and dye degradation and sterilization
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 翁建華
研究生(英文) Jian-Hua Weng
學號 607370011
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-04
論文頁數 67頁
口試委員 指導教授 - 林清彬
委員 - 李柏青
委員 - 張子欽
關鍵字(中) 氯化銀
光觸媒
大腸桿菌
降解
消毒
可靠度
關鍵字(英) silver chloride
photocatalyst
Degradation
Sterilization
reliability
第三語言關鍵字
學科別分類
中文摘要
染料廢水若直接排入到河流和湖泊,將會嚴重污染人們的使用水和農田土壤用水。此外,最常見的飲用水消毒方法是添加氯或氯副產物,儘管這些氯化物質具有顯著的消毒效果,但是消毒後的飲用水通常會有不好的味道和氣味,並且會產生潛在致癌的毒性或誘變產物,例如三鹵甲烷和氯仿。因此本研究進一步提出了一種新穎的高表面積多孔SiC-AgCl/Ag0光催化劑的製造方法,並測試該光催化劑對Orange II偶氮染料降解和環境型大腸桿菌殺菌的效果及其耐久性。多孔性光催化劑系將表面潔靜90%孔隙率的碳化矽浸入液氮中後取出並立即浸泡在8.4M硝酸銀中10秒鐘,此時固態的硝酸銀會均勻塗覆在多孔性碳化矽的骨架表面,接著將樣品浸泡在4M鹽酸溶液中,此時肋骨表面會以非均質析出氯化銀,然後將樣品在200℃加熱8小時,用以增強氯化銀和碳化矽肋骨的接著性。SEM觀察顯示奈米級針狀晶體氯化銀在碳化矽的肋骨呈現均勻交錯堆疊。光觸媒在UV光照射後,藉由XRD分析,在該光觸媒產生灰黑色銀原子簇。在可見光和UV光照射下進行Orange II偶氮染料的降解,發現濃度降解動力學遵循一級反應。此外,這種降解偶氮染料的光催化效果在經過4個循環後仍96%的降解效果。另外,環境型大腸桿菌的滅菌可在50分鐘內完成,其降解動力學也遵循一級反應。本研究製得的高表面積多孔SiC-AgCl/Ag0光催化劑不僅降低使用過多高成本的硝酸銀外,而且提高了水中污染物降解及殺菌效果且具有較高的使用可靠度。
英文摘要
The dye wastewater is directly discharged into rivers and lakes, it will seriously pollute people's water and the soil of the farmland. In addition, the most common disinfection method for drinking water is to add chlorine or chlorine by-products. Although this chlorination has a significant disinfecting effect, drinking water often has a bad taste and smell and will produces potentially toxic or mutagenic products such as trihalomethanes and chloroform, which may be sources of carcinogenesis, so this study further proposes an innovative procedure of producing highly porous SiC-AgCl/Ag0 photocatalyst and tested for durability and degradability of abiotic material (azo dye, Orange II) and biotic material (bacterial, E. coli). Porous photocatalyst were made by 90% porosity silicon carbide in liquid nitrogen, emerging the specimen in 8.4 M silver nitrate for 10 seconds and the solidified silver nitrate were coated on the backbone of silicon carbide. And, the specimen was emerged in 4M hydrochloride solution for precipitated out the non-homogeneous phase silver chloride on the surface of the backbone. SEM shows the needle-like nano sized crystal silver chloride was homogeneously crosslink on the silicon carbide backbone. Later on the specimen were heated at 200℃ for 8 hours to enhance the adhesion of silver chloride and silicon carbide backbone. Through the XRD analysis under the condition of UV light irradiation, grey-black silver was generated on this porous material. Degradation of azo dye was performed under visible and UV light irradiation and the concentration degradation kinetics follow the first order reaction. Furthermore, the degradability of this photocatalyst which degrades azo dye could persist at least 4 cycles been used in our experiment with 96% degradability. Sterilization of E. coli could be completed in 50 minutes and the degradation kinetics follows the first order reaction as well. The photocatalyst produced in this work not only reduced the cost of consuming too much silver nitrate, but increase the reliability and degradability of contaminant in the water.
第三語言摘要
論文目次
第一章前言	1
1.1 研究緣起	1
1.2.6	氯化銀的染料降解	19
1.2.7	氯化銀光催化殺菌	23
1.3 研究目的	25
第二章實驗步驟	26
2.1研究方法及進行步驟	26
2.2 碳化矽的清洗	27
2.3 多孔性碳化矽表面披覆氯化銀薄膜	28
2.3. 1第I型的氯化銀薄膜	28
2.3.2 第II型的氯化銀薄膜	34
2.4. 多孔性碳化矽披覆氯化銀薄膜的燒結	35
2.5.多孔性氯化銀重複使用之可靠度測試	39
2.6 Orange II染料光催化降解	41
2.7.大腸桿菌光催化殺菌	45
第三章結果與討論	49
3.1 氯化銀薄膜的顯微結構	49
3.2 氯化銀薄膜的偶氮染料降解與大腸桿菌的殺菌	51
第四章結論	61
參考文獻	63

 
	圖目錄	
圖1觸媒在不同條件沈積於不銹鋼網的SEM照片	5
圖2氯化銀/銀簇能隙示意圖	14
圖3花狀氯化銀顯微結構的SEM照片	15
圖4圖4 Orange II之化學結構	18
圖5在可見光照射下Ag/AgCl(■)與N-doped TiO2 (▲) 對甲基橙染料降解	21
圖6圖6 AgCl/Ag-NP、AgCl及N-doped TiO2之UV/Vis擴散反射光譜	22
圖7不同光觸媒(N-doped TiO2、AgCl、AgCl/Ag-bulk、AgCl/AgNP50及AgCl/Ag-NP20)在可見光照射下對甲基藍染料降解效率比較	22
圖8多孔性碳化矽的多孔性結構照片	27
圖9 (a) 聚氯乙烯中空管底部用鐵氟龍薄膜給予密封,並置放在6061鋁合金板上	31
圖9 (b) 將多孔性碳化矽圓柱置入聚氯乙烯中空管底部的鐵氟龍薄膜上	31
圖9 (c) 將4.02M飽和氯化銀溶液注滿到多孔性碳化矽的孔隙內,由於間接激冷多孔性碳化矽肋骨的硝酸銀熔液會瞬間冷凍成固態	31
圖9 (d) 將25℃,4.52M飽和鹽酸溶液注入多孔性碳化矽的孔隙內,進而與多孔性碳化矽肋骨表面冰凍的硝酸銀接觸	31
圖9 (e) 鹽酸溶液會使冰凍的硝酸銀表面融化而形成薄薄的液化層,氯化銀析出所需的溶度積,使氯化銀以非均質孕核及成長於冰凍硝酸銀與液態硝酸銀的界面	32
圖9 (f) 析出反應繼續進行,最後在多孔性碳化矽的肋骨披覆氯化銀薄膜	32
圖9 多孔性碳化矽表面披覆第I形的氯化銀薄膜的製程示意圖	33
圖10不同反應時間第I型氯化銀薄膜晶態的SEM照片,反應時間分別是(a)1小時;(b)8小時;(c)20小時	36
圖11第II型的氯化銀薄膜在不同HC濃度晶態的SEM照片,反應濃度分別是(a)10M;(b)7M	37
圖12第I型氯化銀薄膜在不同燒結溫度的晶態(SEM照片),燒結時間10hr,燒結溫度分別是(a)25℃;(b)100℃;(c)200℃;(d)300℃;
(e)400℃;(f)440℃.	38
圖13多孔性氯化銀沖水實驗的示意圖	40
圖14光降解用的光源之光譜(a)UV光;(b)可見光	42
圖15光催化降解的實驗裝置	48
圖16四種大腸桿菌光催化殺菌的實驗裝置	55
圖17氯化銀薄膜細胞瓦解,達到殺菌效果	56
圖18(a)多孔性碳化矽與薄膜降解之比較	57
圖18(b) 薄膜型與多孔性氯化銀對偶氮染料的光催化降解屬於一級動力學	57
圖18(c) 薄膜型與多孔性氯化銀對偶氮染料的光催化降解若屬於雙曲線動力學	58
圖19(a) 多孔性碳化矽與薄膜菌之比較	59
圖19(b) 薄膜型與多孔性氯化銀對大腸桿菌的光催化降解屬於一級動力學	59
圖19(c) 薄膜型與多孔性氯化銀對偶氮染料的光催化殺菌若屬於雙曲線動力學	60
參考文獻
1.	Kawashita M1, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K.” Antibacterial silver-containing silica glass prepared by sol-gel method.” Biomaterials. 2000 Feb;21(4):393-8.

2.	Peng Wang. Baibiao Huang, et al. “Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light” Angew. Chem. Int. Ed. 2008, 47, pp. 7931 –7933.

3.	Moonjung Choi, Kyoung-Hwan Shin, Jyonhsik Jang, “Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light”, Journal of Colloid and Interface Science, 341, 2010, pp. 83-87.

4.	Noriyoshi Kakuta, Naoko Goto, Hironobu Ohkita, and Takanori Mizushima, “Silver Bromide as a Photocatalyst for Hydrogen Generation from CH3OH/H2O Solution”, Journal of Physical Chemistry B, Vol. 103, No. 29, 1999, pp. 5917-5919.

5.	Wei-Chieh Lina, Chien-Hung Chena, Han-Yu Tanga, Yu-Cheng Hsiaoc, Jill Ruhsing Panb, Chi-Chang Huc,∗, Chihpin Huanga Electrochemical photocatalytic degradation of dye solution with a TiO2-coated stainless steel electrode prepared by electrophoretic deposition Applied Catalysis B: Environmental 140–141 (2013) 32–41.

A.	Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Volume 238, Issue 5358, 1972, pp. 37-38.

6.	Peng Wang. Baibiao Huang, et al. “Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light” Angew. Chem. Int. Ed. 2008, 47, pp. 7931 –7933.

7.	H.P.R. Frederikse, David R. Lide, ed. “Solubility Product Constants”, in CRC Handbook of Chemistry and Physics (89th ed.). CRC Press/Taylor and Francis, Boca Raton, FL.pp.8-118
8.	H. Haefke, et al, “Thin Film Growth of AgCl on NaCl(001)”, Thin Solid Films, 195 , 1991, pp. 225-235.

A.	Belkind and E. Ezell, “Compositional and Morphological Analysis of AgCI Films Deposited by Evaporation and R.F. Sputtering”, Thin Solid Films, 142 , 1986, pp. 113-125.

9.	M. Zayat, et al, “Reversible Photochromism of Sol-Gel SiO2 :AgCl Films”, Journal of Sol-Gel Science and Technology, 10, 1997, pp. 203–211.

10.	Song Cheng-fnag et al., “Preparation of Highly Efficient Photocatalyst Ag/AgCl film and study on Its Methyl Orange Degradation under Sunlight”, Journal of Anhui Agri. Sci. vol. 37, No. 18, 2009, pp. 8318-8319, 8342.

11.	Gray Hodes and Gion Calzaferri, “Chemical Solution Deposition of Silver Halide Films”, Advanced Functional Materials, 12, No. 9, August, 2002, pp. 501-505.

12.	Doede, C. M. and C. A. Walker, “Photochemical Engineering”, Chemical Engineering journal, 62, 1955, pp. 159-178.

13.	Maron, S. H. and J. B. Lando., Fundamentals of Physical Chemistry, Macmillan Publishing Co. Inc., New York, 1974.

14.	Zepp, R. G., “Factors affecting the photochemical treatment of hazardous waste”, Environmental Science and Technol, 22, 1988, pp. 256-257.
 
15.	Zafiriou, J. Joussot-Dubien, R.G. Zepp and R.G. Zika, “Photochemistry of natural waters”, Environ. Sci. Technol.18,1984, pp. 358A-371A.

16.	P.H. Chen and C.H. Jenq, “Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide”, Environment International, Vol. 24, No. 8, 1998, pp. 871-879.
17.	Tang Bin, Zhang Qing-qing, “Characterization of Photocatalysis of AgCl Colloid”, Journal of university of science and technology of china, Vol. 32, No. 6, 2002, pp. 743-747.

18.	M Pera-Titus, V García-Molina, MA Banos, J Giménez, S Esplugas, ”Degradation of chlorophenols by means of advanced oxidation processes: a general review”, Applied Catalysis B: Environmental 47, 2004, pp. 219–25.

19.	Martin Lanz, David Schuch, Gion Calzaferri, “Photocatalytic oxidation of water to O2 on AgCl coated electrodes”, J. Photochem. Photobiolog. A: chemistry, 120, 1999, pp. 105-107.

20.	M. Ashokkumar and J. L. Marignier, “Hydrogen and oxygen evolution from water using Ag and AgCl colloids”, Internation Journal of Hydrogen Energy, 24, 1999, pp. 17-20.

21.	Gion Calzaferri, Dominik Brühwiler, Stephan Glaus, David Schürch, Antonio Currao, “Quantum-Sized Silver, Silver Chloride and Silver Sulfide Clusters”, Journal of Imaging Science and Technology, Volume 45, Number 4, July/August, 2001, pp. 331-339.

22.	David Schurch, Antonio Currao, Shaibal Sarkar, Gary Hodes, and Gion Calzaferri, “The Silver Chloride Photoanode in Photoelectrochemical Water Splitting”, J. Phys. Chem. B, vol. 106, No. 49, 2002, pp. 12764-12775.

23.	Meicheng Li, Hang Yu, Rui Huang, Fan Bai, Mwenya Trevor, Dandan Song, Bing Jiang and Yingfeng Li” Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible lightphotocatalysis” Nanoscale Research Letters 2013, 8:442

24.	Nilsson, R., R. Nordlinder, U. Wass, B. Meding and L.Belin, “Asthma, Rhinitis, and dermatitis in workers exposed to reactive dyes”, British Journal of Industrial Medicine, 50, 1993, pp. 65-70.

25.	Song Cheng-fang, Zhang Qing-qing and Tang Bin, “On the photocatalytic degradation of pigment by AgCl film”, Journal of Anhui Institute of Mechanical and Electrical Engineering, vol. 18, No. 1, Mar, 2003, pp. 23-25.

26.	Zhang Yan, Tan Ya-dong and Kong Qian, “Study on the Photocatalytic performance of Reactive red K-2BP by AgCl Photocatalyst”, Contemporary Chemical Industry, Vol. 34, No.3, 2005, pp. 180-183.

27.	Yu Jiemei, Wang Xikui, et al, “Photocatalytic degradation of p-nitrophenol in water with AgCl catalysis”, Chemical Journal onInternet, Vol.8, No.5, May, 2006, pp. 33.

28.	Noriyoshi Kakuta, Naoko Goto, Hironobu Ohkita, and Takanori 

29.	Mizushima, “Silver Bromide as a Photocatalyst for Hydrogen Generation from CH3OH/H2O Solution”, Journal of Physical Chemistry B, Vol. 103, No. 29, 1999, pp. 5917-5919.

30.	ZHANG Qingqing, TANG Bin reparation of Colloid Antibacterial AgCl Film and Its Antibacterial Characterization under hoto Catalysis Journal of Nanjing University of Science and Technology Vol. 28 No. 5(2004)pp.547-551]

31.	Christensen P.A., T.P. Curtis, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin “Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide “Applied Catalysis B:Environmental 41 (2003) 371–386

32.	L. Sikong, B. Noophum, K. Kooptarnond “Photodegradationof Contaminants and Antibacterial Activity Enhanaced by AgCl Nanoparticleson N, S, co-doped TiO2 Thin Films”Digest Journal of Nanomaterials and Biostructures Vol. 10(2)(2015)p.455–469

33.	E.V. Skorb, L.I. Antonouskay, N.A. Belyasov, D.G. Shchukin, H. Mo‥hwald, D.V. Sviridov “Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2and TiO2:In2O3 nanocomposite “Applied Catalysis B: Environmental 84 (2008) 94–99.

34.	Chang-Ching You, Chin-Bin Lin, Yang-Min Liang, Chi-Wang Li and Hui-Chung Hsueh” A Novel Method for Preparation of Silver Chloride Thin Films” Journal of Applied Science and Engineering, Vol. 18, No. 1, pp. 916 (2015)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信