| 系統識別號 | U0002-2508202518060800 |
|---|---|
| DOI | 10.6846/tku202500749 |
| 論文名稱(中文) | 台灣風力發電廠對周邊房價影響之研究 |
| 論文名稱(英文) | The Impact of Wind Power Plants on Nearby Housing Prices in Taiwan |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 產業經濟學系碩士班 |
| 系所名稱(英文) | Department of Industrial Economics |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 温筱慈 |
| 研究生(英文) | Hsiao-Tzu Wen |
| 學號 | 612540053 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-07-15 |
| 論文頁數 | 58頁 |
| 口試委員 |
指導教授
-
洪鳴丰(eureka@mail.tku.edu.tw)
口試委員 - 林佩蒨 口試委員 - 張瓊婷 |
| 關鍵字(中) |
風力發電機 房價 差異中的差異法 特徵價格法 傾向分數配對 鄰避效應 |
| 關鍵字(英) |
Wind turbines Housing prices Difference-in-Differences (DID) Inverse Probability Weighting (IPW) Propensity Score Matching (PSM) NIMBY effects |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本研究探討風力發電機設置是否對台灣住宅房價產生影響。隨著再生能源與淨零排放政策推動,沿海地區逐漸出現風力發電設施,但其噪音、景觀與健康疑慮常引發居民關切,市場可能因此調整住宅價格。本文以桃園市與苗栗縣為研究範圍,蒐集2012年至2018年內政部實價登錄交易資料,並結合地理資訊系統進行距離分組。研究方法採用特徵價格法與差異中的差異法(Difference-in-Differences, DID),輔以平行趨勢檢定與預期效應檢驗,驗證因果推論的前提。最後透過重複抽樣估計、傾向分數加權(Inverse Probability Weighting, IPW)及傾向分數配對(Propensity Score Matching, PSM),以驗證估計結果的可信度。 實證結果顯示,在桃園市與苗栗縣的樣本中,均未發現風力發電機建造後對周邊住宅價格具有顯著影響。此結果與一般直覺認為風機必然會影響房價的看法並不一致。綜合分析可見,風力發電機對房價的影響並不顯著,房價變動仍主要取決於房屋自身特徵與周遭環境條件。 |
| 英文摘要 |
This study investigates whether wind turbine construction affects housing prices in Taiwan. Using transaction data from 2012 to 2018 in Taoyuan City and Miaoli County, housing units were grouped by distance through GIS analysis. The empirical strategy applies a hedonic pricing model and a Difference-in-Differences (DID) approach, supported by Inverse Probability Weighting (IPW), Propensity Score Matching (PSM), resampling, and parallel trend tests. Results show no significant impact of wind turbines on nearby housing prices in either county. Although some subsample analyses indicate limited price variations, these effects are not consistent or statistically significant. Overall, the findings provide little evidence to support the hypothesis that wind turbines influence property values. Regional differences may reflect housing market structures, community acceptance, or policy environments. This study provides empirical evidence from Taiwan to supplement international research on potential NIMBY effects of wind power facilities. The results suggest that market responses to wind turbines are limited. Future research should include more regions and longer periods to examine long-term impacts and underlying mechanisms. |
| 第三語言摘要 | |
| 論文目次 |
目錄 第一章 緒論 1 第一節 研究動機與目的 1 第二章 文獻回顧 3 第一節 房屋價格影響因素與風力發電機相關研究 3 第二節 研究方法之相關研究 6 第三章 研究方法與資料 11 第一節 實證模型 11 第二節 資料來源與說明 14 第三節 變數定義 19 第四節 研究分組設計與描述性統計 21 第五節 模型假設檢驗 26 第六節 穩健性檢驗設計 27 第四章 研究結果 31 第一節 模型估計結果 31 第二節 模型假設檢驗 36 第三節 穩健性檢驗 43 第五章 結論與建議 50 參考文獻 52 圖目錄 圖3-1桃園地區風力發電機與房屋地理位置圖 16 圖3-2桃園地區土地利用類型分布圖 16 圖3-3苗栗地區風力發電機與房屋地理位置圖 17 圖3-4苗栗地區土地利用類型分布圖 17 圖4-1桃園市0-6公里與7–9公里平均房價變化 37 圖4-2桃園市0-3公里與7-9公里平均房價變化 38 圖4-3桃園市4-6公里與7-9公里平均房價變化 39 圖4-4苗栗縣0-6公里與7–9公里平均房價變化 40 圖4-5苗栗縣0-3公里與7–9公里平均房價變化 41 圖4-6苗栗縣4-6公里與7-9公里平均房價變化 42 表目錄 表3-1差異中的差異分析表 13 表3-2桃園市樣本之各組描述性統計 22 表3-3苗栗縣樣本之各組描述性統計 23 表3-4桃園市樣本之各組描述性統計 24 表3-5苗栗縣樣本之各組描述性統計 25 表3-6桃園市0-6公里與7-9公里之樣本數量(全部) 28 表3-7苗栗縣0-6公里與7-9公里之樣本數量(全部) 28 表3-8桃園市0-6公里與7-9公里之樣本數量(抽選) 29 表3-9苗栗縣0-6公里與7-9公里之樣本數量(抽選) 29 表4-1桃園市與苗栗縣DID主迴歸結果 33 表4-2桃園市與苗栗縣DID估計結果 35 表4-3桃園市0-6公里與7–9公里平行趨勢檢定迴歸結果 37 表4-4桃園市0-3公里與7-9公里平行趨勢檢定迴歸結果 38 表4-5桃園市4-6公里與7-9公里平行趨勢檢定迴歸結果 39 表4-6苗栗縣0-6公里與7–9公里平行趨勢檢定迴歸結果 40 表4-7苗栗縣0-3公里與7–9公里平行趨勢檢定迴歸結果 41 表4-8苗栗縣4-6公里與7-9公里平行趨勢檢定迴歸結果 42 表4-9預期效應檢驗結果 43 表4-10桃園市與苗栗縣樣本之重複抽樣穩健性檢驗 44 表4-11桃園配對前後 45 表4-12苗栗配對前後 46 表4-13桃園市樣本平衡性檢定 47 表4-14苗栗樣本平衡性檢定(加權前與加權後) 48 表4-15桃園市樣本以PSM與IPW進行迴歸之估計結果 49 |
| 參考文獻 |
內政部(無日期)。不動產交易實價查詢服務網。 https://lvr.land.moi.gov.tw/。 內政部(無日期)。內政地理資訊圖資雲整合服務平台。https://www.tgos.tw/tgos/Index。 行政院主計總處 (無日期)。中華民國統計資訊網。https://www.stat.gov.tw/Default.aspx。 行政院數位發展部(無日期)。政府資料開放平台。 https://data.gov.tw/。 呂哲源、江穎慧、張金鶚(2019)。土壤液化潛勢區公布對房價之影響。都市與計劃,46(1),33-59。 李春長、俞錚、梁志民(2020)。公佈降雨淹水模擬地圖對淹水區與其鄰近地區住宅價格之影響。住宅學報,29(1),63-89。 曹修章、呂奇傑、周茂振(2020)。應用特徵價格法探討航空噪音對於房地產價格之影響-以桃園國際機場為例。運輸學刊,32(4),401-425。 Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects. econometrica, 74(1), 235-267. Alamolhoda, M., Ayatollahi, S. M. T., & Bagheri, Z. (2017). A comparative study of the impacts of unbalanced sample sizes on the four synthesized methods of meta-analytic structural equation modeling. BMC research notes, 10(1), 446. Ashenfelter, O. C., & Card, D. (1984). Using the longitudinal structure of earnings to estimate the effect of training programs. In: National Bureau of Economic Research Cambridge, Mass., USA. Ata Teneler, A., & Hassoy, H. (2023). Health effects of wind turbines: a review of the literature between 2010-2020. International journal of environmental health research, 33(2), 143-157. Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Statistics in medicine, 28(25), 3083-3107. Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in medicine, 34(28), 3661-3679. Autor, D. H. (2003). Outsourcing at will: The contribution of unjust dismissal doctrine to the growth of employment outsourcing. Journal of labor economics, 21(1), 1-42. Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates? The Quarterly journal of economics, 119(1), 249-275. Callaway, B., & Sant’Anna, P. H. (2021). Difference-in-differences with multiple time periods. Journal of econometrics, 225(2), 200-230. Card, D., & Krueger, A. B. (1993). Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania. In: National Bureau of Economic Research Cambridge, Mass., USA. Chau, K. W., & Chin, T. (2003). A critical review of literature on the hedonic price model. International Journal for Housing Science and its applications, 27(2), 145-165. Clarke, A. (1991). A case of shadow flicker/flashing: assessment and solution. Open University, Milton Keynes. Davis, L. W. (2011). The effect of power plants on local housing values and rents. Review of Economics and Statistics, 93(4), 1391-1402. Day, B., Bateman, I., & Lake, I. (2006). Estimating the demand for peace and quiet using property market data (CSERGE Working Paper EDM 06 03). Centre for Social and Economic Research on the Global Environment, University of East Anglia. Devine‐Wright, P. (2005). Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8(2), 125-139. Diao, M., Leonard, D., & Sing, T. F. (2017). Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values. Regional Science and Urban Economics, 67, 64-77. Fadlon, I., & Nielsen, T. H. (2019). Family health behaviors. American Economic Review, 109(9), 3162-3191. Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of econometrics, 225(2), 254-277. Haac, R., Darlow, R., Kaliski, K., Rand, J., & Hoen, B. (2022). In the shadow of wind energy: Predicting community exposure and annoyance to wind turbine shadow flicker in the United States. Energy Research & Social Science, 87, 102471. Heckert, M. (2015). A spatial difference-in-differences approach to studying the effect of greening vacant land on property values. Cityscape, 17(1), 51-60. Heintzelman, M. D., & Tuttle, C. M. (2012). Values in the wind: A hedonic analysis of wind power facilities. Land Economics, 88(3), 571-588. Herath, S., & Maier, G. (2010). The Hedonic Price Method in Real Estate and Housing Market Research: A Review of the Literature. WU Vienna University of Economics and Business. SRE - Discussion Papers No. 2010/03 Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. econometrica, 71(4), 1161-1189. Hoen, B., Brown, J. P., Jackson, T., Wiser, R., Thayer, M., & Cappers, P. (2013). A spatial hedonic analysis of the effects of wind energy facilities on surrounding property values in the United States (Report No. LBNL-6362E). Lawrence Berkeley National Laboratory. Hoen, B., Wiser, R., Cappers, P., Thayer, M., & Sethi, G. (2011). Wind energy facilities and residential properties: the effect of proximity and view on sales prices. Journal of Real Estate Research, 33(3), 279-316. Iwata, K., Kyoi, S., & Ushifusa, Y. (2023). Public attitudes of offshore wind energy in Japan: An empirical study using choice experiments. Cleaner Energy Systems, 4, 100052. Kline, P. (2012). The impact of juvenile curfew laws on arrests of youth and adults. American Law and Economics Review, 14(1), 44-67. Knopper, L. D., & Ollson, C. A. (2011). Health effects and wind turbines: A review of the literature. Environmental health, 10(1), 78. Ladenburg, J., & Dubgaard, A. (2007). Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark. Energy Policy, 35(8), 4059-4071. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of political economy, 74(2), 132-157. Lang, C., Opaluch, J. J., & Sfinarolakis, G. (2014). The windy city: Property value impacts of wind turbines in an urban setting. Energy Economics, 44, 413-421. MacKinnon, J. G. (2002). Bootstrap inference in econometrics. Canadian Journal of Economics/Revue canadienne d'économique, 35(4), 615-645. Marcus, M., & Sant’Anna, P. H. (2021). The role of parallel trends in event study settings: An application to environmental economics. Journal of the Association of Environmental and Resource Economists, 8(2), 235-275. Mooney, C. Z., Duval, R. D., & Duvall, R. (1993). Bootstrapping: A nonparametric approach to statistical inference. sage. Ozdenerol, E., Huang, Y., Javadnejad, F., & Antipova, A. (2015). The impact of traffic noise on housing values. Journal of Real Estate Practice and Education, 18(1), 35-54. Poulsen, A. H., Raaschou-Nielsen, O., Peña, A., Hahmann, A. N., Nordsborg, R. B., Ketzel, M., Brandt, J., & Sørensen, M. (2019). Long-term exposure to wind turbine noise and risk for myocardial infarction and stroke: a nationwide cohort study. Environmental health perspectives, 2019(3), 037004. Rambachan, A., & Roth, J. (2023). A more credible approach to parallel trends. Review of Economic Studies, 90(5), 2555-2591. Reusswig, F., Braun, F., Heger, I., Ludewig, T., Eichenauer, E., & Lass, W. (2016). Against the wind: Local opposition to the German Energiewende. Utilities Policy, 41, 214-227. Rivera, N. M., & Loveridge, S. (2022). Coal-to-gas fuel switching and its effects on housing prices. Energy Economics, 106, 105733. Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American statistical Association, 89(427), 846-866. Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of political economy, 82(1), 34-55. Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41-55. Roth, J. (2022). Pretest with caution: Event-study estimates after testing for parallel trends. American Economic Review: Insights, 4(3), 305-322. Roth, J., Sant’Anna, P. H., Bilinski, A., & Poe, J. (2023). What’s trending in difference-in-differences? A synthesis of the recent econometrics literature. Journal of econometrics, 235(2), 2218-2244. Rubin, D. B. (2001). Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3), 169-188. Sims, S., Dent, P., & Oskrochi, G. R. (2008). Modelling the impact of wind farms on house prices in the UK. International Journal of Strategic Property Management, 12(4), 251-269. Sirmans, S., Macpherson, D., & Zietz, E. (2005). The composition of hedonic pricing models. Journal of real estate literature, 13(1), 1-44. Smith, V. K., & Huang, J.-C. (1995). Can markets value air quality? A meta-analysis of hedonic property value models. Journal of political economy, 103(1), 209-227. Stuart, E. A., Bradshaw, C. P., & Leaf, P. J. (2015). Assessing the generalizability of randomized trial results to target populations. Prevention Science, 16(3), 475-485. Tibshirani, R. J., & Efron, B. (1993). An introduction to the bootstrap. Monographs on statistics and applied probability, 57(1), 1-436. Wilhelmsson, M. (2000). The impact of traffic noise on the values of single-family houses. Journal of environmental planning and management, 43(6), 799-815. Wolsink, M. (2007). Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’. Renewable and sustainable energy reviews, 11(6), 1188-1207. Wooldridge, J. M. (2020). Introductory econometrics : a modern approach / Jeffrey M. Wooldridge, Michigan State University (Seventh edition. ed.). Cengage. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信