§ Browsing ETD Metadata
  
System No. U0002-2508201612431600
Title (in Chinese) 冷卻溫度對逆流熱虹吸迴路之初步探討
Title (in English) Preliminary Study of Cooling Temperature on Reverse Thermosyphon Loop
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 104
Semester 2
PublicationYear 105
Author's name (in Chinese) 何衛明
Author's name(in English) Wei-Ming Ho
Student ID 603370205
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2016-07-20
Pagination 60page
Committee Member advisor - Shung-Wen Kang
co-chair - Meng-Chang Tsai
co-chair - Yu-Tang Chen
Keyword (inChinese) 逆流熱虹吸迴路
向下傳熱
機械泵
冷卻溫度
穩態
振幅
熱阻
Keyword (in English) Reverse Thermosyphon Loop
Down Heat
Mechanical Pump
Cooling Temperature
Steady State
Amplitude
Thermal Resistance
Other Keywords
Subject
Abstract (in Chinese)
逆流熱虹吸迴路為一可自主向下大量傳熱之裝置,整體作動藉由蒸汽壓力及重力來完成,不需倚靠機械泵或閥件來驅動,本裝置可以用來解決傳統工業用熱虹吸管僅能向上傳熱之缺點。實驗裝置固定冷卻端的溫度,分別控制在10°C、15°C、20°C、25°C、30°C及35 °C,並搭配80 W、100 W、120 W、140 W、160 W、180 W、200 W及210 W,8種不同加熱功率進行實驗,藉由實驗數據探究冷卻溫度對裝置推動力的影響,當冷卻溫度和加熱功率越高時,本裝置啟動時間越早,啟動時間約2000秒到3000秒左右;當時間達到10000秒時整個裝置會接近於穩態,並且持續循環作動。迴路流動非連續性,在較高瓦數操作時頻率為40-45秒一個循環,且冷卻溫度影響震幅不影響頻率。當在同一個加熱功率下,冷卻溫度越高,熱阻值會逐漸降低。
Abstract (in English)
The Reverse Thermosyphon Loop is an autonomous downward heat transfer device and the actuation is driven by steam pressure and gravity, which do not rely on mechanical pump to drive the valve member. The device can overcome the shortage of the traditional industrial  thermosiphon, which depends on the natural  upward movement of  vapor steam, hot fluid and the downward movement of cold  liquids. Fixed experimental temperature of cooling side were controlled at 10°C, 15°C, 20°C, 25°C, 30°C and 35 °C, and with eight different heating  power which were 80W, 100W, 120W, 140W, 160W, 180 W, 200W and 210W, respectively. The experimental data were used to explore the   influence of the cooling temperature on the driving force of the apparatus. When the cooling temperature or the heating power is higher, the device start earlier, the start-up time is about 2000 seconds to 3000 seconds. When the time reaches 10,000 seconds the entire apparatus will be closer to steady state continuous close loop. Loop flow discontinuity in high wattage and its operating  frequency is 40-45 seconds a cycle, and the cooling temperature affect its amplitude and does not affect the frequency. When in the same heating power, the higher the cooling temperature, the thermal resistance will be gradually reduced.
Other Abstract
Table of Content (with Page Number)
目錄
中文摘要…………………………………………...…………...……………………..I
英文摘要……………………………………………..……...………………………..II
第一章	前言………………………………………………….……………………...1
1.1	  研究目的……………………………….…………..……..…………………...1
1.2	  文獻探討…………………………………………….………..……………….1
1.2.1  壓力變化觀測………………………………………………………...……….5
1.2.2  觀測裝置回流現象…………………………...……………………………….6
1.2.3  熱阻及壓力變化情形…………………………………...…………………….7
1.2.4  穩態溫度、時間分佈………………………………………………….……….7
1.2.5  不同填充量的熱通量…………………………………………………...…….8
1.2.6  熱阻值的變化…………………………………………………………………9
1.2.7  不同的冷卻溫度計算和測量熱通量………….................11
第二章	理論簡介………………………………………..…...…………………….12
2.1    熱虹吸管原理簡介……………………………...…...…………………...…12
2.2    虹吸熱管類型………………………………………….……..………......…14
2.3    逆流熱虹吸迴路原理簡介…………………………..……………………...16
第三章	實驗架構……………………………………………..…………………....18
第四章	實驗步驟與方法………………………………...……..………………….19
第五章	實驗儀器………………………………….……………………………….21
第六章	實驗結果與討論…………………………………...…..………………….24
6.1   冷卻溫度的影響………………………….……………...……………...……24
6.1.1  10°C冷卻溫度比較結果………………………………...………………..…24
6.1.2  15°C冷卻溫度比較結果……………………………………...…………..…29
6.1.3  20°C冷卻溫度比較結果………………………………..……….…………..34
6.1.4  25°C冷卻溫度比較結果…………………………………………...……..…38
6.1.5  30°C冷卻溫度比較結果……………………………………………...…..…43
6.1.6  35°C冷卻溫度比較結果………………………………………………….....47
6.2   冷凝蓄壓腔預熱段前後溫度變化……….…………………..………………51
6.3   冷卻溫度對熱阻的影響……………………………………………....……...53
第七章	結論………………………………………………….……………….……57
第八章  參考文獻…………………………………..………………………………58

圖、表目錄
圖1  四種外加機械泵提升冷凝向下傳熱辦法……….………..…..………..……3
圖2  藉液體相變化達到向下傳熱辦法………………….……..……..……..……3
圖3  增加容器槽之逆熱虹吸迴路………………………………............…..……4
圖4  增設浮閥、止回閥之逆流熱虹吸迴路……………………..…...……..……4
圖5  穩態溫度與蒸發器壓力變化觀測…………………………..……..…...……6
圖6  連續時間單組實驗結果………………………………………..…...…..……6
圖7  不同充填量熱阻及壓力隨熱傳量變化圖………………………...…....……7
圖8  穩態的溫度分佈圖及時間分佈………………………………………..….…8
圖9  60%充填量不同熱通量各點穩態溫度…………………………..…..…...…9
圖10 熱阻走勢圖…………………………………………………………….……10
圖11 不同的冷卻溫度計算和測量熱通量的區別…………………………..……11
圖12 虹吸管原理…………………………………………...………………..……12
圖13 虹吸馬桶原理………………………………………………...………..……12
圖14 熱虹吸咖啡壺……………………………………………………….....……13
圖15 熱管迴路結構………………………………………………………….……14
圖16 熱虹吸管迴路結構…………………………………………………..…...…14
圖17 單管虹吸熱管示意圖………………………………………………..……...15
圖18 迴路式平行熱虹吸熱管示意圖…………………………...…………..……15
圖19 迴路式虹吸熱管示意圖………………………………………...……..……16
圖20 逆流熱虹吸迴路實驗裝置………………………………………...…..……17
圖21 逆流熱虹吸迴路循環示意圖…………………………………………….…17
圖22 電腦數據擷取器…………………………………………...…………..……21
圖23 真空幫浦……………………………………………………………….……22
圖24 電子壓力計………………………………………...…………………..……22
圖25 電源供應器…………………………………..……………………...………23
圖26 恆溫水槽…………………………………..……………………………...…23
圖27 溫度感測器位置示意圖…………………………………..…………...……24
圖28 10℃冷卻溫度與80W加熱功率各點溫度、壓力圖………………..…..…25
圖29 10℃冷卻溫度與100W加熱功率各點溫度、壓力圖…………………..…26
圖30 10℃冷卻溫度與120W加熱功率各點溫度、壓力圖………….…….……26
圖31 10℃冷卻溫度與140W加熱功率各點溫度、壓力圖………….…….……27
圖32 10℃冷卻溫度與160W加熱功率各點溫度、壓力圖………….…….……27
圖33 10℃冷卻溫度與180W加熱功率各點溫度、壓力圖………….…….……28
圖34 10℃冷卻溫度與200W加熱功率各點溫度、壓力圖………….…….……28
圖35 10℃冷卻溫度與210W加熱功率各點溫度、壓力圖………….…….……29
圖36 15℃冷卻溫度與80W加熱功率各點溫度、壓力圖………..….…….……30
圖37 15℃冷卻溫度與100W加熱功率各點溫度、壓力圖………………..……30
圖38 15℃冷卻溫度與120W加熱功率各點溫度、壓力圖……………….……31
圖39 15℃冷卻溫度與140W加熱功率各點溫度、壓力圖………………..……31
圖40 15℃冷卻溫度與160W加熱功率各點溫度、壓力圖………………..……32
圖41 15℃冷卻溫度與180W加熱功率各點溫度、壓力圖………………..……32
圖42 15℃冷卻溫度與200W加熱功率各點溫度、壓力圖………………..……33
圖43 15℃冷卻溫度與210W加熱功率各點溫度、壓力圖………………..……33
圖44 20℃冷卻溫度與80W加熱功率各點溫度、壓力圖……………..…..……34
圖45 20℃冷卻溫度與100W加熱功率各點溫度、壓力圖………………..……35
圖46 20℃冷卻溫度與120W加熱功率各點溫度、壓力圖………………..……35
圖47 20℃冷卻溫度與140W加熱功率各點溫度、壓力圖………………..……36
圖48 20℃冷卻溫度與160W加熱功率各點溫度、壓力圖………………..……36
圖49 20℃冷卻溫度與180W加熱功率各點溫度、壓力圖………………..……37
圖50 20℃冷卻溫度與200W加熱功率各點溫度、壓力圖………………..……37
圖51 20℃冷卻溫度與210W加熱功率各點溫度、壓力圖………………..……38
圖52 25℃冷卻溫度與80W加熱功率各點溫度、壓力圖……………..…..……39
圖53 25℃冷卻溫度與100W加熱功率各點溫度、壓力圖…………….….……39
圖54 25℃冷卻溫度與120W加熱功率各點溫度、壓力圖…………….….……40
圖55 25℃冷卻溫度與140W加熱功率各點溫度、壓力圖…………….….……40
圖56 25℃冷卻溫度與160W加熱功率各點溫度、壓力圖…………….….……41
圖57 25℃冷卻溫度與180W加熱功率各點溫度、壓力圖…………….….……41
圖58 25℃冷卻溫度與200W加熱功率各點溫度、壓力圖…………….….……42
圖59 25℃冷卻溫度與210W加熱功率各點溫度、壓力圖…………….….……42
圖60 30℃冷卻溫度與80W加熱功率各點溫度、壓力圖……………...….……43
圖61 30℃冷卻溫度與100W加熱功率各點溫度、壓力圖………………..……44
圖62 30℃冷卻溫度與120W加熱功率各點溫度、壓力圖………………..……44
圖63 30℃冷卻溫度與140W加熱功率各點溫度、壓力圖………………..……45
圖64 30℃冷卻溫度與160W加熱功率各點溫度、壓力圖………………..……45
圖65 30℃冷卻溫度與180W加熱功率各點溫度、壓力圖………………..……46
圖66 30℃冷卻溫度與200W加熱功率各點溫度、壓力圖………………..……46
圖67 30℃冷卻溫度與210W加熱功率各點溫度、壓力圖…………………..…47
圖68 35℃冷卻溫度與80W加熱功率各點溫度、壓力圖……………..………..48
圖69 35℃冷卻溫度與100W加熱功率各點溫度、壓力圖……………..………48
圖70 35℃冷卻溫度與120W加熱功率各點溫度、壓力圖……………..………49
圖71 35℃冷卻溫度與140W加熱功率各點溫度、壓力圖……………..………49
圖72 35℃冷卻溫度與160W加熱功率各點溫度、壓力圖……………..………50
圖73 35℃冷卻溫度與180W加熱功率各點溫度、壓力圖……………..………50
圖74 35℃冷卻溫度與200W加熱功率各點溫度、壓力圖…………………..…51
圖75 35℃冷卻溫度與210W加熱功率各點溫度、壓力圖……………….….…51
圖76 冷凝蓄壓腔預熱段前後溫度變化………………………...…………..……52
圖77 10℃冷卻溫度對熱阻變化圖……………………………...………………..53
圖78 15℃冷卻溫度對熱阻變化圖……………………………...…………..……54
圖79 20℃冷卻溫度對熱阻變化圖……………………………...……………..…54
圖80 25℃冷卻溫度對熱阻變化圖……………………………...…………..……55
圖81 30℃冷卻溫度對熱阻變化圖……………………………...…………..……55
圖82 35℃冷卻溫度對熱阻變化圖……………………………...…………..……56

表一 加熱200W不同充填量下特性………………………………...………..……9
表二 熱阻整理表…………………………………………………………..………10
References
[1]	E. Schmidt, in: Proc. Instn. Mech. Engrs., Conf. ASME, London, (1951), pp. 361-363.
[2]	A. Faghri, Heat Pipe Science and Technology, Taylor & Francis Group,  Washington, DC. 1995. 
[3]	B. S. Larkin, “An experimental study of the two-phase thermosyphon tube”, 70-CSME-6(EIC-71-MECH 8) 14 (B-6).
[4]	M. Shiraishi, K. Kikuchi, T. Yamanishi, “Investigation of heat transfer    characteristics of a two-phase closed thermosyphon”, Heat Recovery System & CHP, 1, 1981, pp.287-297.
[5]	Y. Lee, U. Mital, “A two-phase closed thermosyphon”, International Journal of Heat Mass Transfer, 15, 1972, pp.1695-1770.
[6]	Y. aminaga, N. O, Ito, “Transient behavior of a thermosyphon heat pipe under stepwise temperature and heat load changes”, in: Proceedings of 7th        International Heat Pipe Conference, London, 1981.
[7]	I. Sauciuc, A. Akbarzadeh, P. Johnson, “Characteristics of two phase closed thermosyphon for mediua temperature heat recovery applications”, Heat   Recovery Systems & CHP, 14 (7), 1995, pp.631-640.
[8]	A. Faghri, M. Chen, M. Morgan, “Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons”, Transactions of ASME Journal of Heat Mass Transfer, 111 (3), 1989, pp.611-618.
[9]	F. A. Studer, T. W. McDonald, “Experimental study of a two-phase      thermosyphon loop heat exchanger”, Transactions of ASHRAE, 92 (2), 1986, pp.486-493.
[10]	T. Wadowski, A. Akbarzadeh, P. Johnson, “Hysteresis in thermosyphon based heat exchangers and introduction of a novel triggering system for low-temperature difference heat-recovery applications”, Heat Recovery Systems & CHP, 11 (6), 1992, pp.523-531.
[11]	M. Mochizuki, T. Nguyen, S. Sugihara, K. Mashiko, Y. Saito, T. Nguyen, and V. Wuttijumnong, “Nuclear Reactor Must Need Heat Pipe for Cooling”,   Proceeding of 10th international heat pipe symposium, pp. 8-12, Taiwan, 2011.
[12]	S. Filippeschi, “On periodic two-phase thermosyphons operating against   gravity”, International journal of Thermal Sciences, Vol 45, 2006, pp. 124-137.
[13]	Y. Dobriansky, Y. G. Yohanis, “Cyclical Reverse Thermosiphon”, Archives of thermodynamics, Vol. 31, No. 1, 2010, pp. 3-32.
[14]	Y. Dobriansky, Concepts of Self-acting Circulation Loops for Downward Heat Transfer (Reverse Thermosiphons), Energy conversion and management, Vol. 52, 2011, pp.414-425.
[15]	Roberts CC. A review of heat pipe liquid delivery concepts. In: Proceedings of advances in heat pipe technology conference. London: Pergamon Press, Oxford; 1982. p. 693–702 [J Heat Recov Syst 1981; 1(4): 261–6).
[16]	NASA Goddard Space Flight Center, “Ammonia-Charged Aluminum Heat Pipes with Extruded Wick,” Preferred Reliability Practices, Issue PD-ED-1209, pp. 1-7, 1998.
[17]	S. Ippohshi, S. Tabara, K. Motomatsu, A. Muto, and H. Imura, Development of a Top-Heat-Mode Loop Thermosyphon, The 6th ASME-JSME Thermal    Engineering Joint Conference, 2003, TED-AJ03-578.
[18]	Y. Koito, M. S. Ahamed, S. Harada, H. Imura,  “Operational charateristics of a top-heat-type long heat transport loop through a heat exchanger”, Applied Thermal Engineering, Vol.29, pp. 259-264, 2009.
[19]	Y. Dobriansky, Y. G. Yohanis, “Cyclical Reverse Thermosiphon”, Archives of thermodynamics, Vol. 31, No. 1, pp. 3-32, 2010.
[20]	Y. Dobriansky, “Concepts of Self-acting Circulation Loops for Downward Heat Transfer (Reverse Thermosiphons)”, Energy conversion and management, Vol. 52, pp. 414-425, 2011. 
[21]	Meng-Chang Tsai, Shung-Wen Kang, Heng-Yi Li, Chi-Fong Ai, “Experimental Study of a Cyclical Two-Phase Reverse Loop Thermosyphon,” Paper No. IHTS140288, The Heat Transfer Symposium 2014, Beijing, China, 6-9, May, 2014. 
[22]	Meng-Chang Tsai, Fong-Hao Wu, Heng-Yi Li,Shung-Wen Kang,       “Visualization and Performance Testing with Various Filling Ratio in a Two Phase Reverse Thermosyphon, ” Paper No. IWHT2015-1172, International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, Taipei, Taiwan, Oct. 16-19, 2015.
[23]	Meng-Chang Tsai1, Hung Wang, Fong-Hao Wu1, How-Ming Lee1, Heng-Yi Li1, Shung-Wen Kang, “Study of Thermal Characteristics in a Reverse        Thermosyphon Loop” Joint 18th IHPC and 12th IHPS, Jeju, Korea, June 12-16, 2016.
Terms of Use
Within Campus
I request to embargo my thesis/dissertation for 5 year(s) right after the date I submit my Authorization Approval Form.
Agree to authorize disclosure on campus
Duration for delaying release from 5 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and contact me for receiving the payment.
Duration for delaying release from 5 years.
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email