系統識別號 | U0002-2507202312210100 |
---|---|
DOI | 10.6846/tku202300487 |
論文名稱(中文) | 以LoRa為基礎實踐偏鄉與山域報案 |
論文名稱(英文) | Emergency Reporting in Mountain and Rural Area Using LoRa Technology |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 羅丁仁 |
研究生(英文) | TING-JEN LO |
學號 | 608410188 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-07-15 |
論文頁數 | 108頁 |
口試委員 |
指導教授
-
蔡憶佳(107378@o365.tku.edu.tw)
口試委員 - 林慧珍 口試委員 - 林慶昌 |
關鍵字(中) |
LoRa 緊急報案 山域救援 |
關鍵字(英) |
LoRa Emergency Report Mountain and Rural Area |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
論文提要內容: 物聯網(Internet of Things,簡稱IoT)透過感知層、網路層及應用層架構出了包含農林業、牧業監測管理、交通運輸系統、醫療監測、智慧城市及智慧家庭…等等的運用,並已高度擴展至生活的各個層面。在物聯網通訊技術中, LoRa以低成本、低能耗及出色的傳輸距離等特性,近來被應用在防救災領域中的國土監測及救援通訊中。然而,多數的搜索救援的LoRa技術運用(search and rescue,簡稱SAR),其行動的時序處在整體救災邏輯中的中段位置,而救災的源頭卻始於報案行為,後透過各轄區的救災救護中心對於事件的人、事、時、地、物、因何、為何(簡稱7W)及傷病患的意識、呼吸、年齡及主訴等進行派遣適當就近的救援單位前往執行搜索及救援任務。其中對於精確的描述所處的位置對於發現事件及接觸待救者是啟動所有救援行動的關鍵,也是現行最耗時且最易失敗的環節;且由於通訊設備能耗將嚴重影響待救者能否持續性發送待救訊息,亦是搜索及救援行動能否成功的關鍵之一。本研究致力建立新的LoRa緊急報案模組,發展出有別現行透過手機、網路或app的緊急報案方式,讓所有山域待援者在極低度或無通訊訊號的山域環境仍能進行有效的報案,並透過傳輸距離驗證臺灣最易迷失或發生人命傷亡的幾座名山,結果顯示,本研究所提的理論模式具備有效性及在成本考量下亦具備建置的可行性。 |
英文摘要 |
Title of Thesis:Emergency Reporting in Mountain and Rural Total pages:108 Area Using LoRa Technology Key word: LoRa, Emergency Report, Mountain and Rural Area Name of Institute: MASTER’S PROGRAM, DEPARTMETN OF COMPUTER SCIENCE AND INFORMATION ENGINEERING, TAMKANG UNIVERSITY Graduate date: 06/2023 Degree conferred: MASTER Name of student: TING-JEN LO Advisor: Dr. YIHJIA TSAI 羅丁仁 蔡憶佳 博士 Abstract: The Internet of Things (IoT) has established applications in agriculture and forestry, animal husbandry monitoring and management, transportation systems, medical monitoring, smart cities, and smart homes through the perception layer, network layer, and application layer. It has been extensively expanded to all aspects of everyday living. In IoT communication technology, the LoRa module has been recently utilized in land monitoring and detection in the domain of disaster prevention and response due to its low cost, low energy consumption, and excellent transmission distance. However, for most LoRa technology applications in search and rescue (SAR), the sequence of actions occurs in the middle of the overall disaster response logic, and the initiation of disaster response begins with emergency reporting. This is then followed by the fire and EMS command centers of various jurisdictions dispatching appropriate and nearby rescue units to carry out SAR missions based on the "who", "what", "when", "where", "which", "how", and "why" (7W) of the incident, as well as the consciousness, breathing, age, and chief complaint of the patient. Among these, an accurate description of the location of the emergency is key to starting all rescue operations, for discovering incidents and contacting the reporter. It is also the most time-consuming and failure-prone aspect of SAR. Moreover, the energy consumption of communication equipment can seriously affect whether the emergency message can be continually transferred by reporters. It is also one of the key factors to the success of the search and rescue operation. This research is dedicated to establishing a new LoRa emergency reporting module and developing an alternative emergency reporting approach beyond mobile phones, the Internet, or apps. This will allow all those in need of help in mountainous environments with extremely low or no communication signals to still carry out effective emergency reporting. Through verifying the transmission distance in several famous mountains in Taiwan that are most likely to result in people getting lost or causing casualties, the results show that the theoretical model proposed in this study is effective and feasible under cost considerations. |
第三語言摘要 | |
論文目次 |
目錄 誌謝 I 目錄 V 圖目錄 VI 表目錄 VIII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究範圍與限制 13 1.2.1 研究範圍: 13 1.2.2 研究限制: 13 1.3 研究方法與流程 13 1.3.1 研究方法 13 1.3.2 研究流程 14 第2章 消防單位的山域救援工作介紹 15 2.1 消防局山域救援工作 15 2.2 受案流程與救災救護指揮中心報案系統介紹 16 2.2.1 消防局救災救護指揮中心(以下簡稱119)受理報案流程: 18 2.3 常見山域傷病患種類與時間依存性 35 2.4 空中救援 42 第3章 山域救援相關通訊設計的文獻回顧 46 3.1 物聯網技術回顧 46 3.2 LORA在山域救援行動運用相關回顧 57 第4章 LORA導入山域報案模式 72 4.1 硬體 75 4.2 軟體運作模型 76 4.3 模式評估 81 第5章 結論與展望 99 5.1 結論 99 5.2 未來展望 99 參考文獻: 101 圖目錄 圖 1.1 Number of mountain climbers and hikers in Japan 2006-2021 2 圖 1.2 BMC membership 2001~2014 3 圖 1.3 Number of participants in climbing in the U.S. 2006-2020 4 圖 1.4 106~110年山域事故案件數 6 圖 1.5 106~110年山域事故統計 6 圖 1.6 Number of accidents versus time from 1950~2018 9 圖 1.7山區手機可通訊範圍 12 圖 1.8 研究流程圖 14 圖 2.1 119受理報案流程 18 圖 2.2 多途徑報案系統 19 圖 2.3 多特徵定位報案 20 圖 2.4現行受理報案系統畫面 21 圖 2.5現行119車輛衛星定位派遣車機畫面 22 圖 2.6現行119護理諮詢提示畫面 26 圖 2.7 119指揮資訊網路系統運作狀態畫面(1) 27 圖 2.8 119指揮資訊網路系統運作狀態畫面(2) 27 圖 2.9 受理報案派遣系統流程 28 圖 2.10消防局現有有線通訊線路示意圖 31 圖 2.11緊急救護事件剖析圖 33 圖 2.12美國救護指揮中心規範 34 圖 2.13 Tri-modal Death Distribution 41 圖 2.14 Golden Hour Principle Graph 41 圖 2.15 Anatomy of EMS Incident 44 圖 3.1 SIGFOX 整體傳輸架構 48 圖 3.2 資料傳輸率與通訊距離 49 圖 3.3透過多台 LoRa 閘道器,遠端節點能與後端網路伺服器建立連線,進而將資料傳送至應用伺服器或雲端儲存 50 圖 3.4 LPWAN技術性能比較 58 圖 3.5 Signal received and RSSI versus distance 59 圖 3.6 Power consumption 59 圖 3.7 遊客協助系統網路計畫 61 圖 3.8 使用LoRaWAN系統的雪崩搜救場景 64 圖 3.9城市區及城鄉混合區傳輸範圍 65 圖 3.10 無人機支援山林火災LoRa架構示意圖 66 圖 3.11 左:穿戴式設備;右:LoRa Gateway 67 圖 3.12 穿戴式設備圖示 68 圖 3.13 系統架構圖(資料採加密並上傳雲端儲存) 68 圖 3.14 系統架構 69 圖 3.15低功率廣域網路技術定位 70 圖 3.16 GPS與LoRa平均能耗比較 70 圖 3.17 各網路技術能耗及訊號傳輸比較 71 圖 3.18非授權頻段技術比較 71 圖 4.1 Raspberry Pi模組 75 圖 4.2 SX1278模組 76 圖 4.3 Neo-6M模組 76 圖 4.4 LoRa運作模型 77 圖 4.5 LoRa導入山域報案系統 81 圖 4.6LoRa系統架構 84 圖 4.7充氣模組架構 85 圖 4.8 歷年山難事故主要山域 88 圖 4.9 南投縣政府消防局所屬玉山分隊網頁截圖 90 圖 4.10 南投縣政府消防局所屬仁愛分隊網頁截圖 90 圖 4.11雪山主峰至五峰分隊距離圖 92 圖 4.12雪山主峰至尖石分隊距離圖 92 圖 4.13 雪山主峰至象鼻分隊距離圖 93 圖 4.14 雪山主峰至泰安分隊距離圖 93 圖 4.15 品田山至新竹五峰分隊距離圖 94 圖 4.16 品田山至新竹尖石分隊距離圖 95 表目錄 表 1 108年台日山域事故 7 表 2 事故類型 10 表 3 91~110年消防機關山域意外事故救援統計 11 表 4 美國救護指揮中心規範中文說明 34 表 5 常見山域傷病種類 35 表 6現實中原有的表4,應修正為本表 44 表 7 LPWAN( Low-Power-Wide-Area-Network) 主要技術比較 47 表 8 物聯網中層網路技術比較 56 表 9 Positioning error 60 表 10 NMEA0183格式範例 78 表 11 LoRa網路的封包大小依區域和傳輸率變化 83 表 12 屏東縣政府消防局消防分隊資訊 89 表 13 嘉義縣政府消防局第三大隊所屬分隊資料 89 表 14 無線電規格表 96 表 15 無線電與LoRa模組比較 97 |
參考文獻 |
參考文獻: 1. Nepal Mountaineering Association. (2008). Retrieved 2 June 2011. [Online]. Available: https://nepalmountaineering.org 2. Whitlock, W., Van Romer, K., and Becker, H. (1991). Nature Based Tourism: An Annotated Bibliography Clemson SC: Strom Thurmond Institute, Regional Development Group. 3. Pomfret, G. (2006). "Mountaineering adventure tourists: a conceptual framework for research". Tourism Management. 27(1), 113–123. doi:10.1016/j.tourman.2004.08.003. 4. Beedie, P., and Hudson, S. (2003). "Emergence of mountain-based adventure tourism". Annals of Tourism Research. 30(3), 625–643. doi:10.1016/S0160-7383(03)00043-4. 5. Apollo, Michal (2017). "The true accessibility of mountaineering: The case of the High Himalaya". Journal of Outdoor Recreation and Tourism. 17, 29–43. doi:10.1016/j.jort.2016.12.001. 6. Coalter, F., Dimeo, P., Morrow, S., and Taylor, J. (2010). The Benefits of Mountaineering and Mountaineering Related Activities: A Review of Literature. A Report to the Mountaineering Council of Scotland. 7. Apollo, M., and Wengel, Y. (2021). Mountaineering Tourism: A Critical Perspective. Routledge. 8. [Online]. Available: https://www.statista.com/statistics/1331635/japan-number-hikers/ 9. [Online]. Available: https://www.thebmc.co.uk/participation-in-climbing-mountaineering 10. [Online]. Available: https://www.statista.com/statistics/191233/participants-in-climbing-in-the-us-since-2006 11. Akerman, D. (2021). Receiving from lora high altitude balloons [Online]. Available: www.daveakerman.com/?p=2828. 12. Cottenie, T. (2016). Taiwan's pole of inaccessibility [Online]. Available: %5Curl%7Btylercottenie. wordpress.com/2016/12/14/taiwans-pole-of-inaccessibility/%7D. 13. Apollo, M., and Wengel, Y. (2021). Mountaineering Tourism: A Critical Perspective. Routledge. 14. Kublak, T. (2014). Mountaineering Methodology – Part 1 – The Basics. Tomas Kublak – MMPublishing. ISBN 978-80-87715-12-3. 15. Cymerman, A., and Rock, P.B. (Report). US Army Research Inst. of Environmental Medicine Thermal and Mountain Medicine Division Technical Report. USARIEM-TN94-2. Archived from the original on 23 April 2009. Retrieved 5 March 2009. 16. DeLoughery, E.P., and DeLoughery, T.G. (2022). "Review and Analysis of Mountaineering Accidents in the United States from 1947–2018". High Altitude Medicine & Biology. 23(2), 114–118. doi:10.1089/ham.2021.0085. PMID 35263173. S2CID 247361980. Archived from the original on 11 July 2022. Retrieved 11 July 2022. 17. Cox, S.M., and Fulsaas, K. (Eds.). (2009). Mountaineering: The Freedom of the Hills (7th ed.). Seattle: The Mountaineers. ISBN 978-0-89886-828-9. 18. DeLoughery, E.P., and DeLoughery, T.G. (2022). Review and Analysis of Mountaineering Accidents in the United States from 1947–2018. 19. Roach, R., Stepanek, J., and Hackett, P. (2002). Acute Mountain Sickness and High-Altitude Cerebral Edema. In: Medical Aspects of Harsh Environments. Vol. 2. Borden Institute, Washington, DC. Retrieved 5 January 2009. 20. Biondich, A.S., and Joslin, J.D. (2015). "Coca: High Altitude Remedy of the Ancient Incas". Wilderness & Environmental Medicine. 26(4), 567–571. 21. Roach, J.M., and Schoene, R.B. (2002). High-Altitude Pulmonary Edema. In: Medical Aspects of Harsh Environments. Vol. 2. Borden Institute, Washington, DC. Retrieved 5 January 2009. 22. Carline, J.D. (2004). Mountaineering first aid: a guide to accident response and first aid care. Mountaineers Books. ISBN 0-89886-878-5. 23. Wilkerson, J.A., Bangs, C., and Hayward, J. (1986). Hypothermia, Frostbite, and Other Cold Injuries: Prevention, Recognition, and Prehospital Treatment. The Mountaineers. ISBN 0-89886-024-5. 24. "Cold Injuries: Practice Essentials, Overview, Systemic Hypothermia," 16 October 2021. [Online]. Available: https://emedicine.medscape.com/article/1278523-overview. 25. Muza, S.R., Fulco, C.S., and Cymerman, A. (2004). "Altitude Acclimatization Guide". US Army Research Inst. Of Environmental Medicine Thermal and Mountain Medicine Division Technical Report (USARIEM–TN–04–05). Archived from the original on 23 April 2009. Retrieved 5 March 2009. 26. Szymczak, R.K., Marosz, M., Grzywacz, T., Sawicka, M., and Naczyk, M. (2021). "Death Zone Weather Extremes Mountaineers Have Experienced in Successful Ascents". Frontiers in Physiology. 12. 27. 張冠吾。蒙古國2017年演講簡報。 28. 張冠吾。蒙古國2018年演講簡報。 29. Somers, T., Paul, S., et al. Prehospital care administration P247~256. 30. D. A. Gentile, J. A. Morris, T. Schimelpfenig, S. M. Bass, and P. S. Auerbach, (1992). " Annals of Emergency Medicine, vol. 21, no. 7, pp. 853–861. 31. Hackett, P.H., and Roach, J.H. (2015). "High-altitude medical problems". Emergency Medicine: A Comprehensive Study Guide (8th ed.). pp. 1429-36. 32. Kao, W. F., Kuo, C. C., Hsu, T. F., Chang, H., Sung, Y. Y., Yen, D. H., Wu, J. K., and Lee, C. H. (2002). Acute mountain sickness in Jade Mountain climbers of Taiwan. Aviation, space, and environmental medicine, 73(4), 359–362. 33. Wang, S. H., Chen, Y. C., Kao, W. F., Lin, Y. J., Chen, J. C., Chiu, T. F., Hsu, T. Y., Chen, H. C., and Liu, S. W. (2010). Epidemiology of acute mountain sickness on Jade Mountain, Taiwan: an annual prospective observational study. High altitude medicine and biology, 11(1), 43–49. 34. Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., Baillie, J. K., and Lake Louise AMS Score Consensus Committee (2018). The 2018 Lake Louise Acute Mountain Sickness Score. High altitude medicine & biology, 19(1), 4–6. 35. Brown, D.J.A., Brugger, H., Boyd, J., and Paal, P. (2012). "Accidental Hypothermia". New England Journal of Medicine, 367(20), 1930–1938. 36. Fears, J.W. (2011). The Pocket Outdoor Survival Guide: The Ultimate Guide for Short-Term Survival. Simon and Schuster. 37. Marx, J. (2010). Rosen's emergency medicine: concepts and clinical practice (7th ed.). Philadelphia, PA: Mosby/Elsevier. 38. Robertson, D., Biaggioni, I., and Low, P.A. (2011). Primer on the Autonomic Nervous System. Academic Press. 39. [Online]. Available: https://zh-tw.hikingbook.net/posts/登山迷路了怎麼辦-新手必看-掌握四大原則-助你平安下山 40. 洪東榮。台灣常見的毒蛇及咬傷之治療。台北榮民總醫院毒藥物季刊,1996。 41. C.-K. Chen, C.-C. Lin, F.-Y. Shih, C.-H. Chaou, J. C.-C. Lin, T.-I. Lai, C.-Y. Tseng, and C.-C. Fang. (2015). "Population-based study of venomous snakebite in Taiwan". Journal of Acute Medicine, 5, 38-42. 42. [Online]. Available: https://kknews.cc/health/6knkp9l.html 43. WHO. (2016). "Guideline for the management of snakebites". 44. [Online]. Available: http://e-info.org.tw 農委會台灣特生中心(Taiwan Environmental Information Center, TEIC) 45. Reddick, E.J. (1979). "Evaluation of the Helicopter in Aeromedical Transfers". Aviations Space Environment Medicine. 46. Boyd, C.R., Corse, K.M., and Campbell, R.C. (1989). "Interhospital Transport of the Major Trauma Patient Air versus Ground". 47. American Hospital Association statistics. 48. Brugger, H., Elsensohn, F., Syme, D., Sumann, G., Falk, M., and others. (2005). "A survey of emergency medical services in mountain areas of Europe and North America: official recommendations of the International Commission for Mountain Emergency Medicine (ICAR Medcom)". High Alt Med Biol, 6(3), 226-37. 49. 李一詩. (2017). 物聯網重要技術LPWAN解析、6大主要技術、各家優勢與產業發展、商業模式與智慧城市應用。 50. SigFox. "SigFox Technology Overview". Available: https://www.sigfox.com/en/sigfox-iot-technology-overview 51. Mroue, H., Nasser, A., Hamrioui, S., Parrein, B., Motta-Cruz, E., Rouyer, G. (2018). "MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT". pp. 1-5. 52. "LoRaWAN Specification Version V1.0". (2015). [Online]. Available: https://lora-alliance.org/sites/default/files/2018-05/2015_-_lorawan_specification_1r0_611_1.pdf 53. "What is LoRaWAN". (2015). [Online]. Available: https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf 54. Hoglund, A., Lin, X., Liberg, O., Behravan, A., Yavuz, E.A., Van Der Zee, M., Sui, Y., Tirronen, O., Ratilainen, A., Eriksson, D. (2017). "Overview of 3GPP Release 14 Enhanced NB-IoT". IEEE Network, 31(6), 16–22. 55. 李文恩. (2017). 低功耗廣域網路串起物聯網裝置(3): NB-IoT. [Online]. Available: https://www.techbang.com/posts/50000-low-power-wide-area-network-internet-device-3-nb-iot 56. RPMA - u-blox. (2016). "RPMA". Available: https://www.u-blox.com/zh/rpma 57. McClelland, C. (2017). "RPMA — Overview of Ingenu’s LPWAN Technology". [Online]. Available: https://medium.com/iotforall/rpma-overview-of-ingenus-lpwan-technology-3d72c47f0461 58. WEIGHTLESS. (2023). "Weightless Specification". [Online]. Available: https://www.openweightless.org/ 59. Wi-Fi Alliance. (2023). "Wi-Fi HaLow". [Online]. Available: https://www.wi-fi.org/zh-hant/discover-wi-fi/wi-fi-certified-halow 60. International Telecommunication Union. (1949). "ALPHABETICAL INDEX of the contents of the documents of the International Radio Conference". 61. QUALCOMM Incorporated. (2012). "IEEE802.11ac: The Next Evolution of Wi-Fi Standards". 62. The Institute of Electrical and Electronics Engineers, Inc. (IEEE). (2017). "OFFICIAL IEEE 802.11 WORKING GROUP PROJECT TIMELINES". [Online]. Available: http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm 63. Torres, N., Martins, P., Pinto, P., Lopes, S.I. (2021). "Smart and Sustainable Mobility on Campus: A secure IoT tracking system for the BIRA Bicycle". In Proceedings of the 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1-7. 64. Hashim, N., Idris, F., Ab Aziz, T.A., Johari, S.H., Nor, R.M. (2021). "Location tracking using LoRa". International Journal of Electrical and Computer Engineering (IJECE), 11(4), 3123–3128. 65. Abboud, M., Nicola, C., Habib, G. (2022). "Distance Estimation Using Lora and Neural Networks". E. Renault et al. :MLN 2021, LNCS13175, pp.148-159. 66. 2019 IEEE INFOCOM WKSHPS: (WCNEE 2019): Wireless Communications and Networking in Extreme Environments. 67. Ferreira, A.E., Ortiz, F.M., Almeida, T.T., Costa, L.H.M.K., Foubert, B., Amadou, I., Mitton, N. (2020). "A study of the LoRa signal propagation in forest, urban, and suburban environments". Annals of Telecommunications, vol. 75, pp. 333-351. 68. 陳柏皓. (2018). 利用LoRa通訊技術實現山難搜救工作。國立成功大學工程科學系2018年碩士論文. 69. 吳俊霖, 林詠章, 林安紘. (2018). 物聯網技術在山區搜救定位之應用。2018全國登山研討會. 70. Ferreira, A.E., Ortiz, F.M., Costa, L.H.M.K., Foubert, B., Amadou, I., Mitton, N. (2020). "A Visitor Assistance System Based on LoRa for Nature Forest Parks". Electronics, 9(9), 696. 71. Gaelens, J., Verhaevert, J., Rogier, H., Van Torre, P. (2017). "LoRa mobile-to-base-station channel characterization in the Antarctic". Sensors, 17(8), 1903. 72. Bianco, G.M., Giuliano, R., Marrocco, G., Mazzenga, F., Mejia-Aguilar, A. (2021). "LoRa system for search and rescue: Path-loss models and procedures in mountain scenarios". IEEE Internet Things J., 8(3), 1985–1999. 73. Gallego-Madrid, J., Molina-Zarca, A., Sanchez-Iborra, R., Bernal-Bernabe, J., Santa, J., Ruiz, P.M., Skarmeta-Gómez, A.F. (2020). "Enhancing Extensive and Remote LoRa Deployments through MEC-Powered Drone Gateways". Sensors, 20(14), 4109. 74. Saraereh, O.A., Alsaraira, A., Khan, I., Uthansakul, P. (2020). "Performance Evaluation of UAV-Enabled LoRa Networks for Disaster Management Applications". Sensors, 20(8), 2396. 75. Bouras, C., Gkamas, A., Katsampiris Salgado, S.A. (2021). "HCI Preliminary Study and Implementation for a LoRa based SAR System". 76. Jain, Y., Soni, B., Goyal, A., Sharma, C. (2020). "Novel Wearable Device for Health Monitoring and Tracking of Soldiers Based on LoRa Module". |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信