系統識別號 | U0002-2507202207480700 |
---|---|
DOI | 10.6846/TKU.2022.00710 |
論文名稱(中文) | 基於藍牙信標與無線網狀網路的電子圍籬系統 |
論文名稱(英文) | Digital Fence System based on Bluetooth Beacons and Wireless Mesh Networks |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 110 |
學期 | 2 |
出版年 | 111 |
研究生(中文) | 謝易儫 |
研究生(英文) | Yi-Hao Hsieh |
學號 | 610410051 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2022-07-14 |
論文頁數 | 43頁 |
口試委員 |
指導教授
-
林其誼(chiyilin@mail.tku.edu.tw)
口試委員 - 林振緯 口試委員 - 蔡智強 指導教授 - 林莊傑(158778@mail.tku.edu.tw) |
關鍵字(中) |
物聯網 電子圍籬 藍牙信標 無線網狀網路 MQTT |
關鍵字(英) |
MQTT IOT Wireless Mesh Network Bluetooth Beacon Internet of Things Digital Fence |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
全球疫情升溫,不管在世界各地各個國家都有疫情出現,這逐漸威脅到各國的安全,但又無法進行鎖國政策,國外貿易是各國不可或缺的經濟效益之一,各國都需要出口進口,也需要外商人員駐點,因此出境前各國都會要求PCR為陰性,才能出國,到了國外,各國都有各自的防疫隔離政策,以本國的先前的防疫政策為例,需要住進防疫旅館隔離14日並且PCR採檢為陰性,才能回到各自的住家,因此防疫旅館的監測有其必要性,也是人民健康安全以及避免疫情入侵本國的第一道防線。 本研究主要探討關於防疫旅館的電子圍籬系統。目前國內是使用電子圍籬2.0,其監測方式是使用手機與基地台進行隔離者位置的監控,但因基地台範圍與手機定位功能的浮動性,使得定位不夠準確,導致隔離者每日數次接到疫情指揮中心的電話,造成隔離者的不便以及增加疫情指揮中心的工作量。是以,設計一套較為準確的電子圍籬系統,以取代政府目前的電子圍籬2.0以及人工隨機電訪,是有其必要性與迫切性。 本研究使用藍牙信標技術來監測使用者於防疫旅館內的位置,並經由無線網狀網路來進行資料傳輸。更精確地說,定位方式採用藍牙信標之RSSI值來確認手機於室內的位置,再於開發版與開發版之間使用Wi-Fi無線網狀網路技術進行通訊。此定位方式的最主要優點在於比目前的電子圍籬2.0系統監測方式更為精準,可大幅減少誤判,不僅降低了疫情指揮中心的工作量,也為使用者帶來便利性。 |
英文摘要 |
In today's society, the Internet of Things (IoT) technology can be found everywhere, from smart home applications such as air conditioners, refrigerators, lights and TVs, to smart business applications such as museum tours, product introductions and medical monitoring. This shows that IoT applications have been gradually integrated into our daily life, but there are still many related services waiting to be developed. Most of the IoT information transmission methods rely on wireless communication technologies [1], among which Wi-Fi and Bluetooth are two common choices for smart home devices. In this thesis we focus on developing a novel digital fence system for quarantine hotels. The current government’s digital fence 2.0 mainly operates over the cellular networks. However, due to the fluctuating coverage of the base stations, the positioning capability of the digital fence 2.0 is not accurate enough, which brings inconveniences to the people in quarantine hotels. When a person physically in his/her hotel room is wrongly positioned as outside the room, the staff needs to call the person to make sure whether he/she has left the room. In other words, the positioning error not only increases the workload of the epidemic command center, but also bothers the people in the quarantine hotels. Therefore, it is necessary and urgent to design a more accurate digital fence system to replace the current digital fence 2.0. In our digital fence system, the Bluetooth beacon technology is used to monitor the user's location in the hotel and the location information is sent via wireless mesh networks. More precisely, in every room, a Bluetooth beacon is installed, and we make use of the cell phone of the quarantined person to scan for the Bluetooth beacon in his/her room. The scanned results will be sent back to the backend server through Wi-Fi wireless mesh technology. If the person has left the room, his/her cell phone can no longer detect the specific Bluetooth beacon signal. Whenever the anomaly has been found by the backend server, the staff can then try to contact the person. The main advantage of this positioning method is that it is more accurate than the current digital fence 2.0, which can significantly reduce unnecessary misjudgments. With such a system, the workload of the epidemic command center can be reduced, at the same time it can bring convenience to the quarantined people. |
第三語言摘要 | |
論文目次 |
第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 3 第二章 技術背景與相關研究 4 2.1 藍牙(Bluetooth) 4 2.2 iBeacon藍牙信標 6 2.2.1 iBeacon運作 6 2.2.2 iBeacon封包格式 7 2.2.3 iBeacon距離估算 8 2.3 訊息佇列遙測傳輸(MQTT) 10 2.4 Wi-Fi無線網路 14 2.4.1網路型態 15 2.4.2無線網狀網路(Wi-Fi Mesh) 18 2.5 相關研究 20 第三章 系統架構與實作 24 3.1 系統架構 24 3.2 系統運作原理 26 第四章 系統實作與功能展示 28 4.1 iBeacon設備選擇 28 4.2 Reader設備選擇 30 4.3 傳至ESP32開發板 30 4.4 ESP32開發板接受信息 32 4.5 Mosquitto MQTT Server架設 33 4.6 Wi-Fi Mesh 接收與傳送 34 4.7 ESP32發布至MQTT Broker 35 4.8 網頁訂閱MQTT Broker 37 第五章 結論與未來展望 38 5.1 結論 38 5.2 未來展望 38 參考文獻 40 圖目錄 圖 2 1藍牙iBeacon封包格式 8 圖 2 2 MQTT訊息傳送流程圖 11 圖 2 3 QoS 0傳輸方式 12 圖 2 4 QoS 1傳輸方式 13 圖 2 5 QoS 2傳輸方式 13 圖 2 6星狀網路 16 圖 2 7樹狀網路 17 圖 2 8網狀網路 18 圖 2 9 Wi-Fi Mesh距離判別連線介紹 19 圖 2 10 Wi-Fi Mesh 自動分配連線路由器 19 圖 3 1本實驗系統架構圖 25 圖 3 2 Wi-Fi Mesh 加入新節點 26 圖 4 1 iBeacon參數設定 29 圖 4 2手機接收Beacon信息 30 圖 4 3 連接ESP32 網路 31 圖 4 4開啟傳送圖示 32 圖 4 5 ESP32接收Beacon信息畫面 33 圖 4 6 Mosquitto MQTT Server的Log畫面 33 圖 4 7 ESP32 Wi-Fi Mesh傳送資料 34 圖 4 8 ESP32 Wi-Fi Mesh接收資料 34 圖 4 9 ESP32推播至MQTT Broker 35 圖 4 10 MQTT Client確認推播資訊 36 圖 4 11隔離者在房間內示意圖 37 圖 4 12隔離者離開房間示意圖 37 表目錄 表 2 1傳統藍牙與BLE規格比較表 [2] 5 表 2 2 iOS距離估算狀態表 [3] 9 |
參考文獻 |
[1] 衛生福利部疾病管制署, “電子圍籬2.0運作及防疫資料蒐集,兼顧個資保護,” [線上]. Available: https://www.cdc.gov.tw/Bulletin/Detail/ZqWqQR7_yZFRWtl_llJGGg?typeid=9. [存取日期: 07 2022]. [2] 新通訊,“低功耗/標準/高速規格合體 藍牙4.0應用左右逢源,” [線上]. Available: https://www.2cm.com.tw/2cm/zh-tw/market/B1C12F26DAD442478C0CACF162E9D44D. [存取日期: June, 2022]. [3] Apple, “Getting Started with iBeacon,” [線上]. Available: https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf. [存取日期: June, 2022]. [4] BluetoothSIG, “Intro to Bluetooth Beacons,” [線上]. Available: https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-beacons/. [存取日期: June, 2022]. [5] Apple, “Proximity Beacon Specification R1,” Apple, 2015. [6] M. Ivanić and I. Mezei, “Distance Estimation Based on RSSI Improvements of Orientation Aware Nodes,” 於 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 2018. [7] OASIS, “MQTT,” [線上]. Available: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt. [存取日期: June, 2022]. [8] HiveMQ,“Quality of Service (QoS) 0,1, & 2 MQTT Essentials,” [線上]. Available: https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/. [存取日期: June, 2022]. [9] E. Cay, Y. Mert, A. Bahcetepe, B. K. Akyazi and A. S. Ogrenci, "Beacons for indoor positioning," 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1-5, doi:10.1109/ICEngTechnol.2017.8308143. [10] A. R. Jiménez, F. Seco, P. Peltola and M. Espinilla, "Location of Persons Using Binary Sensors and BLE Beacons for Ambient Assitive Living," 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 206-212, doi: 10.1109/IPIN.2018.8533714. [11] M. C. Eugenio, "Wireless mesh network for remote monitoring of electric power meters at a university campus," 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII), 2017, pp. 1-6, doi: 10.1109/CONCAPAN.2017.8278512. [12] C. S.N., S. Singha, S. Ghorai, N. V. and B. Samuel, "Getting Information about the Neighbour Street Light Using WIFI Mesh Network," 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), 2018, pp. 130-132, doi: 10.1109/ICDI3C.2018.00037. [13] M. Sugita, H. Matsue, K. Yamaguchi, T. Shimodaira, M. Shirotori and S. Nanamatsu, "Development strategy of disaster-resistant WiFi mesh networks and the disaster monitoring and reporting system in a local area," 2015 International Conference on Information Networking (ICOIN), 2015, pp. 139-144, doi: 10.1109/ICOIN.2015.7057871. [14] M. C. Eugenio, "Wireless mesh network for remote monitoring of electric power meters at a university campus," 2017 IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII), 2017, pp. 1-6, doi: 10.1109/CONCAPAN.2017.8278512. [15] L. Chichao, G. Jiaqi, R. Jingping, K. Han and H. Tao, "A wireless mesh network based temperature monitoring system for blast furnaces," 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), 2017, pp. 265-269, doi: 10.1109/ICEMI.2017.8265785. [16] M. Audeh, "Metropolitan-scale Wi-Fi mesh networks," in Computer, vol. 37, no. 12, pp. 119-121, Dec. 2004, doi: 10.1109/MC.2004.251. [17] Guo, Z., Ma, X., Zhang, P., & Liu, Z. (2021, February). A dust sensor monitoring system using Wi-Fi mesh network. In Journal of Physics: Conference Series (Vol. 1754, No. 1, p. 012129). IOP Publishing. [18] Apple App Store, “iBeacon Scanner,” [線上]. Available: https://apps.apple.com/us/app/ibeacon-scanner/id907396646/. [存取日期: June, 2022]. [19] Mosquitto, “Mosquitto MQTT,” [線上]. Available: https://mosquitto.org/. [存取日期: June, 2022]. [20] Apple App Store, “EasyMQTT,” [線上]. Available: https://apps.apple.com/tw/app/easymqtt/id1523099606/. [存取日期: June, 2022]. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信