系統識別號 | U0002-2502202016061300 |
---|---|
DOI | 10.6846/TKU.2020.00724 |
論文名稱(中文) | 使用六位元逐次逼近式類比數位轉換器作量化器回授之高解析度低功耗離散時間二階三角積分調變器 |
論文名稱(英文) | Design of a High Resolution and Low Power Discrete-Time Second-order Delta Sigma Modulator with 6-bit SAR Feedback Quantizer |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 電機工程學系機器人工程碩士班 |
系所名稱(英文) | Master's Program In Robotics Engineering, Department Of Electrical And Computer Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 108 |
學期 | 1 |
出版年 | 109 |
研究生(中文) | 陳柏劭 |
研究生(英文) | Po-Shao Chen |
學號 | 605470292 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2020-01-08 |
論文頁數 | 61頁 |
口試委員 |
指導教授
-
江正雄(jsken.chiang@gmail.com)
委員 - 吳紹懋(eesmwu@saturn.yzu.edu.tw) 委員 - 楊維斌(robin@ee.tku.edu.tw) 委員 - 陳信良(cxl7@ulive.pccu.edu.tw) |
關鍵字(中) |
離散時間 三角積分調變器 逐次逼近式類比數位轉換器之量化器 |
關鍵字(英) |
Discrete-Time Sigma Delta Modulator SAR quantizer |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
類比數位轉換器(Analog-to Digital-Converter, ADC)的應用十分廣泛,且擁有許多種類,如果考慮高解析度的應用,三角積分類比數位轉換器是最佳選擇。三角積分類比數位轉換器的核心是三角積分調變器(Delta-Sigma Modulator, DSM),為了達到更高的解析度,在設計上可以考慮提高DSM的階數或是量化器位元數,而後者的提升,會使得量化器的設計更來得不容易,且功耗要求更大。而如何在提高位元數的要求下,盡可能的設計出高解析度且低耗能的量化器,是本論文所探討之方向。 本研究為設計一個三角積分類比數位轉換器(DSM ADC),並結合逐次逼近式類比數位轉換器(SAR ADC)作為量化器使用。相較於一般使用快閃式類比數位轉換器(FLASH ADC)為量化器,使用SAR ADC可以擁有更低的功耗,且FLASH ADC在高位元的考量下,設計不易且效能不佳,使用SAR ADC可以解決此問題,在高位元量化器的DSM實現下,更能凸顯出SAR ADC量化器及Flash ADC量化器的優劣性。 本論文所提出的三角積分調變器,使用UMC 0.18m CMOS製程,其作用電壓為1.8V,頻寬為25kHz,取樣頻率為3.2MHz,系統電壓操作範圍為0.45V 至 1.35V,SNDR可達到101.88 dB,平均功耗為833uW。 |
英文摘要 |
The applications of Analog-to-Digital Converter (ADC) are very broad, and it has various types. When considering high resolution applications, Delta-Sigma Analog-to-Digital Converter must be the best choice. Delta-Sigma Modulator (DSM) is the core of Delta-Sigma Analog-to-Digital Converter. As for high resolution Delta-Sigma ADC considerations, there are two approaches to achieve this goal. One is to increase the order and the other is to increase quantizer bits of the SDM. The latter method will make the quantizer design become more difficult and consume more power. This research work will investigate how to design high resolution and low power quantizer while increasing the bits in the quantizer. This work designs a high resolution DSM combined with Successive Approximation Register (SAR) ADC as the quantizer. Compared with using conventional FLASH ADC as the quantizer in a DSM, using SAR ADC will consume less power. For circuit implementation, it is difficult to design a high bit FLASH ADC, while using SAR ADC will resolve these problems. Under high bit DSM, the strength and weakness between SAR quantizer and Flash quantizer will significantly arise. The proposed DSM was designed by UMC 0.18m CMOS technology. The chip has functional voltage of 1.8V, bandwidth of 25kHz, sampling frequency of 3.2MHz, system operation voltage ranging from 0.45V to 1.35V, SNDR of 101.88 dB and power consumption of 833uW. |
第三語言摘要 | |
論文目次 |
中文提要 I 英文提要 II 目錄 III 圖目錄 VII 表目錄 X 第1章 概論 1 1.1 研究背景與動機 1 1.2 設計流程 2 1.3 論文架構 3 第2章 類比數位轉換器簡介 4 2.1 前言 4 2.2 類比數位轉換器架構 4 2.2.1 快閃式類比數位轉換器(Flash ADC) 4 2.2.2 管線式類比數位轉換器(Pipeline ADC) 5 2.2.3 逐次逼近暫存器式類比數位轉換器(SAR ADC) 6 2.2.4 三角積分調變器(Delta-Sigma Modulator, DSM) 7 2.3 類比數位轉換器參數定義 7 2.3.1 解析度(Resolution) 7 2.3.2 量化誤差(Quantization Error) 8 2.3.3 信號雜訊比(SNR) 9 2.3.4 信號對雜訊和失真比(SNDR) 9 2.3.5 無雜散動態範圍(Spurious-Free Dynamic Range, SFDR) 10 2.3.6 有效位元(Effective Number of Bits, ENOB) 10 2.3.7 微分非線性(Differential Non-Linearity, DNL) 10 2.3.8 積分非線性(Integral Non-Linearity,INL) 11 2.4 ADC架構的比較 12 第3章 三角積分調變器 16 3.1 三角積分調變器簡介 16 3.2 三角積分調變器架構 18 3.2.1 單一迴路架構 18 3.2.2 多迴路架構 19 3.3 量化器 19 3.4 奈奎氏取樣定理 21 3.5 超取樣技術 22 3.6 雜訊移頻 24 3.6.1 一階之雜訊移頻 25 3.6.2 二階之雜訊移頻 27 第4章 系統設計與前模擬 29 4.1 系統架構 29 4.2 系統架構之模擬驗證 29 4.3 電路設計與模擬 31 4.4 放大器 (OPERATIONAL AMPLIFIER) 33 4.4.1 二級差動運算放大器 33 4.4.2 共模迴授電路 (CMFB) 35 4.5 控制時序產生之電路 36 4.5.1 除頻器 (Freguency divider) 36 4.5.2 非重疊時脈產生器(Nonoverlapping) 37 4.5.3 完整之系統控制時序 38 4.6 積分器 (INTEGRATOR) 39 4.6.1 交換式電容電路 39 4.6.2 積分器電路 40 4.7 加法器 (SUMMER) 41 4.8 迴授部分之積分器 (INTEGRATOR WITH DAC) 43 4.9 SAR ADC 電路架構 45 4.9.1 SAR ADC 系統架構 45 4.9.2 數位類比轉換器 (DAC) 46 4.9.3 比較器 (Comparator) 47 4.9.4 SAR控制電路 (SAR LOGIC) 49 第5章 佈局與結果比較 50 5.1 佈局圖 50 5.2 模擬結果 52 5.3 模擬結果比較 55 5.4 量測考量與結果 56 第6章 結論 58 6.1 結論與未來展望 58 參考文獻 59 圖1.1晶片設計流程圖 2 圖2.1 Flash ADC 5 圖2.2 Pipeline ADC 系統架構 6 圖2.3 SAR ADC系統架構 6 圖2.4 DSM轉移函式 7 圖2.5量化誤差之機率密度函數分布 8 圖2.6二級式高解析ADC架構圖 13 圖2.7混合型高解析ADC架構 14 圖2.8各ADC架構之應用範圍 15 圖3.1三角積分調變器區塊圖 16 圖3.2三角積分調變器之架構 17 圖3.3 (a)CIFB (b)CIFF架構 18 圖3.4簡單之多級串接架構 19 圖3.5 Mid-rise量化和量化誤差 20 圖3.6 Mid-tread量化和量化誤差 21 圖3.7奈奎式取樣率之頻譜 22 圖3.8超取樣轉換器之架構 22 圖3.9經由低通濾波器後之功率頻譜密度 23 圖3.10三角積分調變器之數學模型 24 圖3.11一階之三角積分調變器架構 25 圖3.12傳統二階三角積分調變器 27 圖3.13一階及二階雜訊移頻之功率頻譜密度 28 圖4.1電路系統架構 30 圖4.2功率頻譜密度圖 30 圖4.3動態分析 31 圖4.4混合型類比數位轉換器電路 32 圖4.5二級差動運算放大器 33 圖4.6放大器模擬結果(波德圖) 35 圖4.7交換式電容共模迴授電路 35 圖4.8除頻器電路 36 圖4. 9除頻器模擬結果 36 圖4. 10非重疊時脈產生器電路 37 圖4. 11非重疊時脈 38 圖4. 12系統時序控制 38 圖4. 13交換式電容電路 39 圖4. 14互補式開關電路 39 圖4.15積分器電路 40 圖4.16反向延遲加法器電路 42 圖4.17迴授部分之積分器電路 44 圖4.18 SAR ADC 系統架構圖 45 圖4.19 SAR ADC 模擬結果(頻譜圖) 45 圖4.20 CDAC電路圖 46 圖4.21 4輸入動態比較器 47 圖4.22比較器遲滯圖 48 圖4.23位移式暫存器電路 49 圖5.1佈局設計圖 50 圖5.2實際佈局圖 51 圖5. 3完整電路Presim模擬結果之頻譜圖(TT_25°) 52 圖5. 4完整電路Presim模擬結果之頻譜圖(其他模擬環境) 53 圖5. 5 完整電路Prosim模擬結果之頻譜圖(TT_25°) 54 圖5. 6完整電路Prosim模擬結果之頻譜圖(其他模擬環境) 54 圖5. 7量測環境之設定 56 圖5. 8濾波電路及偏壓電路(a)Filter tank(b)LM317(c)OP27 57 表2. 1各類ADC特性比較表 13 表4. 1 系統規格 30 表4. 2 放大器設計規格 33 表4. 3 放大器模擬結果 34 表4. 4 遲滯表 48 表5. 1 Presim模擬結果 52 表5. 2 prosim模擬結果 53 表5. 3 模擬結果比較表 55 |
參考文獻 |
[1]Chun-Yao Lu, Chang-Yu Hsieh,Hsin-Liang Chen and Jen-Shiun Chiang, "A high-resolution time-interleaved delta-sigma modulator with low oversampling," Proceedings of the 2009 12th International Symposium on Integrated Circuits, Singapore, 2009, pp. 5-8. [2]D. A. Johns and K. Martin, Analog Integrated Circuit Design, Wiley, 1997 [3]P. Su and H. Chiueh, "The design of low-power CIFF structure second-order sigma-delta modulator," 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, 2009, pp. 377-380 [4]Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2000 [5]D. Hernandez-Garduno, J. Silva-Martinez, “ Continuous-time common-mode feedback for high-speed switched-capacitor networks,” IEEE J. Solid-State Circuits, vol. 40, pp. 1610–1617, Aug. 2005 [6]Y. Geerts, A. M. Marques, M. S. J. Steyaert and W. Sansen, "A 3.3-V, 15-bit, delta-sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications," in IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp. 927-936, July 1999 [7]Y. Geerts, M. S. J. Steyaert and W. Sansen, "A high-performance multibit /spl Delta//spl Sigma/ CMOS ADC," in IEEE Journal of Solid-State Circuits, vol. 35, no. 12, pp. 1829-1840, Dec. 2000 [8]Gil-cho Ahn et al., "A 0.6V 82dB /spl Delta//spl Sigma/ audio ADC using switched-RC integrators," ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., San Francisco, CA, 2005, pp. 166-591 Vol. 1 [9]D. B. Kasha, W. L. Lee and A. Thomsen, "A 16-mW, 120-dB linear switched-capacitor delta-sigma modulator with dynamic biasing," in IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp. 921-926, July 1999 [10]K. D. Chen, Automatic Coefficients Synthesis and Circuit Implemention Techniques of High-Order Sigma-Delta Modulators, Ph. D. Dissertation, NCKU, 2000 [11]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design (Second Edition), OXFORD, 2002 [12]R. Rajendran and P. V. Ramakrishna, "A Design of 6-bit 125-MS/s SAR ADC in 0.13-µm MM/RF CMOS Process," 2012 International Symposium on Electronic System Design (ISED), Kolkata, 2012, pp. 23-27 [13]Z. Cao, S. Yan and Y. Li, "A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 542-634 [14]T. Ritoniemi, T. Karema and H. Tenhunen, "Design of stable high order 1-bit sigma-delta modulators," IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 1990, pp. 3267-3270 vol.4 [15]R. W. Stewart, "An overview of sigma delta ADCs and DAC devices," IEE Colloquium on Oversampling and Sigma-Delta Strategies for DSP, London, UK, 1995, pp. 1/1-1/9 [16]R. Khoini-Poorfard and D. A. Johns, "Time-interleaved oversampling convertors," in Electronics Letters, vol. 29, no. 19, pp. 1673-1674, 17 Sept. 1993 [17]X. Meng, Y. Zhang, T. He, P. Payandehnia and G. C. Temes, "A noise-coupled time-interleaved delta-sigma modulator with shifted loop delays," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 2045-2048 [18]C. Pan, H. San and T. Shibata, "A 2nd-order Delta Sigma AD modulator using dynamic amplifier and dynamic SAR quantizer," 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Phuket, 2016, pp. 1-5. [19]E. Bilhan and F. Maloberti, "A Wideband Sigma-Delta Modulator With Cross-Coupled Two-Paths," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 886-893, May 2009. [20]J. Liu, S. Li, W. Guo, G. Wen and N. Sun, "A 0.029-mm2 17-fJ/Conversion-Step Third-Order CT $DeltaSigma$ ADC With a Single OTA and Second-Order Noise-Shaping SAR Quantizer," in IEEE Journal of Solid-State Circuits, vol. 54, no. 2, pp. 428-440, Feb. 2019. [21]I. Jang et al., "A 4.2-mW 10-MHz BW 74.4-dB SNDR Continuous-Time Delta-Sigma Modulator With SAR-Assisted Digital-Domain Noise Coupling," in IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1139-1148, April 2018. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信