| 系統識別號 | U0002-2408202204295200 |
|---|---|
| DOI | 10.6846/TKU.2022.00688 |
| 論文名稱(中文) | X光吸收光譜對鈦修飾五氧化二釩電致變色薄膜原子與電子結構之研究 |
| 論文名稱(英文) | Atomic and Electronic Structure of Ti-V2O5 electrochromic film studied by X-ray Absorption Spectroscopy |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 物理學系碩士班 |
| 系所名稱(英文) | Department of Physics |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 110 |
| 學期 | 2 |
| 出版年 | 111 |
| 研究生(中文) | 吳奕翰 |
| 研究生(英文) | I-Han Wu |
| 學號 | 608210166 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2022-06-28 |
| 論文頁數 | 68頁 |
| 口試委員 |
指導教授
-
董崇禮(cldong@mail.tku.edu.tw)
口試委員 - 陳啟亮 口試委員 - 葉炳宏 |
| 關鍵字(中) |
五氧化二釩 電化學 溶膠凝膠 電致變色 XAS 智能窗戶 |
| 關鍵字(英) |
Vanadium Pentoxide Electrochemistry Sol-Gel Electrochromism XAS Smart Window |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
近年來電致變色玻璃已被廣泛的研究,在智能窗戶領域中具有優秀節能的應用實例。氧化釩(Vanadium Oxide)是個眾所皆知的變色材料,是綠色建築中非常具有前景的節能材料應用,然而此類型的材料在電致變色相關機制與微觀影響的研究已知甚少,因此本文採用溶膠凝膠法製備該薄膜。相較於其他材料,釩氧化物具有結構簡單與價格低廉的優點,且較於多彩。這種材料只需單層薄膜在玻璃上就足以有效改變玻璃光學性質。通過電子顯微鏡(SEM)、原子力顯微鏡(AFM)和X射線繞射(XRD)對薄膜進行厚度,表面形貌,晶體結構的量測。光學性質由UV-Vis分光光度計而得。電化學性能由循環伏安法(CV)、計時電流法(CA)測定。結果顯示,Ti-V2O5比V2O5顯示出較出色的著色率,可以歸因於局域原子結構的對稱性和電子結構的變化。原位吸收光譜即時觀測薄膜進行漂白與著色反應時的原子和電子結構變化,以便闡明其電致變色機制。本文還研究了對綠能窗戶應用至關重要的電致變色薄膜的化學反應穩定性。 |
| 英文摘要 |
In recent years, electrochromic glass has been widely studied, and it has excellent energy-saving application in the field of smart windows. Vanadium oxide is a well-known electrochromic material. However, the research on the electrochromic mechanism and microscopic effects of this type of smart material is seldom known, this study uses sol-gel method to prepare the film. Vanadium oxide systems are simple, cheap, and exhibit different colors depend on its multiple oxidation states. A single layer of this material deposited on a glass is sufficient to change the optical property of the glass efficiently. The film thickness, surface morphology, crystal structure were confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Optical properties were obtained by UV-Vis spectrophotometer. Electrochemical properties were determined by cyclic voltammetry (CV) and chronoamperometry (CA). The results show that Ti-V2O5 has better coloring rate than V2O5, which can be attributed to the alternation of local atomic symmetry and electronic structures revealed by X-ray absorption spectroscopy. Moreover, in-situ XAS monitored the change of atomic and electronic structures during the bleaching-coloration to elucidate the electrochromic coloration mechanism of these films. The stability of the electrochromic film, which is critical for architectural window applications, is also investigated in this study. |
| 第三語言摘要 | |
| 論文目次 |
目錄 第一章、緒論 1 1.1 前言 1 1.2 研究目的 4 第二章、文獻回顧及理論 5 2.1 電致變色(electrochromic)理論及文獻 5 2.2 奈米材料 7 2.3 溶膠凝膠法(sol-gel Process) 8 2.4 電致變色元件 10 2.5 五氧化二釩(V2O5)介紹 11 第三章、實驗步驟與方法 12 3.1實驗方式 12 3.2 五氧化二釩、鈦修飾五氧化二釩溶膠製備 13 3.3 ITO玻璃基板處理 14 3.4 薄膜生長 15 3.6 儀器介紹 16 第四章、實驗結果與討論 34 4.1 場發射掃描式電子顯微鏡 (SEM)分析 34 4.2 X光繞射儀 (XRD) 分析 39 4.3 電化學分析 42 4.4 紫外-可見光透射光譜(UV-vis)分析 45 4.5 Raman分析 50 4.5 X光吸收光譜(XAS) Soft X-ray分析 53 4.6 X光吸收光譜(XAS) hard X-ray分析 58 第五章、結論 62 參考資料 63 圖目錄 圖1. 1 美國國能源資訊局(EIA)能源消耗分類[1] 2 圖1. 2 智能窗戶實際應用[12] 3 圖2. 1 常見過渡金屬氧化物的電致變色材料[17] 6 圖2. 2 溶膠凝膠過程[29] 9 圖2. 3 電致變色元件結構[30] 10 圖2. 4 五氧化二釩(V2O5) (a)晶體結構圖 (b)八面體示意圖 11 圖3. 1 五氧化二釩(V2O5)、鈦修飾五氧化二釩(Ti-V2O5)製備流程以及測量方式 13 圖3. 2 SEM內部結構圖[32] 17 圖3. 3 SEM儀器裝置 17 圖3. 4 AFM原理示意圖[33] 19 圖3. 5 AFM儀器圖 19 圖3. 6 UV-vis儀器裝置圖 21 圖3. 7 UV-vis 光路圖 21 圖3. 8 XRD 原理及儀器圖[34] 22 圖3. 9 Raman光譜儀原理[35] 23 圖3. 10 Raman光譜儀原理 24 圖3. 11 Raman光譜儀 24 圖3. 12 電化學分析儀裝置圖 25 圖3. 13 循環伏安法( Cyclic Voltammetry, CV )儀器電壓時間圖 26 圖3. 14 計時電流法( Chronoamperometry, CA ) 儀器電流時間圖 26 圖3. 15 同步輻射研究中心同步輻射光源的產生 28 圖3. 16 同步輻射研究中心 28 圖3. 17 X光吸收光譜實驗站示意圖 29 圖3. 18 儀器架設示意圖 29 圖3. 19 穿透式示意圖 30 圖3. 20 螢光式示意圖 30 圖3. 21 多重散射與單一散射示意圖 33 圖3. 22 X光吸收光譜XANES與EXAFS分界圖 33 圖4. 1 五氧化二釩 (V2O5) 薄膜、鈦修飾五氧化二釩薄膜 (Ti- V2O5)薄膜表面圖 35 圖4. 2 五氧化二釩 (V2O5) 薄膜、鈦修飾五氧化二釩薄膜 (Ti-V2O5)薄膜截面圖 35 圖4.3 (a)-(d) EDS 元素分析圖 37 圖4. 4 五氧化二釩 (V2O5) 薄膜、鈦修飾五氧化二釩薄膜 (Ti- V2O5)表面形貌圖 38 圖4. 5 五氧化二釩 (V2O5)、鈦修飾五氧化二釩薄膜 (Ti-V2O5) 5°-65°的XRD圖 40 圖4. 6 五氧化二釩 (V2O5)、鈦修飾五氧化二釩薄膜著色前 (Ti-V2O5) 5°-25°的XRD圖 40 圖4. 7 五氧化二釩 (V2O5)、鈦修飾五氧化二釩薄膜著色後 (Ti-V2O5) 5°-25°的XRD圖 41 圖4. 8 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5) CV比較圖(實線:第1圈,虛線 : 第300圈) 43 圖4. 9 300cycles 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5) CV圖 43 圖4. 10 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)薄膜退色過程時間-電流關係圖 44 圖4. 11 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)薄膜著色過程時間-電流關係圖 44 圖4. 12 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)薄膜的樣品圖 46 圖4. 13 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)不同電壓的可見-紫外光穿透率 46 圖4. 14 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)波長600nm的可見-紫外光穿透率 47 圖4. 15 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)薄膜原位(in-situ)穿透率與時間響應圖 48 圖4. 16 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)漂白、著色效率圖 49 圖4. 17 五氧化二釩結構變化[38] 50 圖4. 18 (a)五氧化二釩(V2O5)結構變化、(b)不同結構之α、ε、δ、γ - LiV2O5[42] 51 圖4. 19 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)Raman光譜圖 51 圖4. 20 不同偏壓下(1V、0.5V、0V、-0.5V、-1V) 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5)Raman光譜圖 52 圖4. 21 3d 軌域晶格場分裂[44] 53 圖4. 22 3d 軌道示意圖 [45] 54 圖4. 23 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5) (a) V L2,3-edge XANES 圖譜(b)O k-edge XANES 圖 55 圖4. 24 V2O5、Ti-V2O5 漂白與著色態V L2,3-edge的XANES光譜 56 圖4. 25 O K-edge(a)漂白態;(b)著色態 高斯擬合(Gaussian Fitting)圖 57 圖4. 26 a1/b1比值 57 圖4. 27 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5) (a)漂白態與 (b)著色態XANES圖 59 圖4. 28 五氧化二釩 (V2O5)、鈦修飾五氧化二釩 (Ti-V2O5) (a)漂白態與 (b)著色態前邊緣峰值 59 圖4. 29 氧化釩反曲點(Inflection point)與前緣峰(pre-edge peak)位置[48] 60 圖4. 30 氧化釩價數與吸收特徵位置關係圖[48] 60 圖4. 31 V K-edge 的前吸收邊緣位置計算漂白、著色價數分布圖 61 表目錄 表1. 1 變色機制原理特性比較 2 表2. 1 合成法奈米材料製備方式[24] 7 表3. 1 實驗參數 12 表3. 2 製備溶膠之藥品 14 表4. 1 薄膜粗糙度 38 表4. 2 著色前樣品(001)特徵峰位置與層間間距 41 表4. 3 著色後樣品(001)特徵峰位置與層間間距 41 表4. 4 電化學儀參數 43 表4. 5 電化學儀參數 44 表4. 6 薄膜穿透率變化 48 表4. 7 循環初期漂白、著色效率分析 49 表4. 8 循環末期漂白、著色效率分析 49 表4. 9 V K-edge 的前吸收邊緣位置與價態 61 |
| 參考文獻 |
[1] https://www.eia.gov/energyexplained/use-of-energy/. [2] Neil L.Sbar, Lou Podbelski, Hong Mo Yang and Brad Peased, “Electrochromic dynamic windows for office buildings”, Volume 1, Issue 1, June 2012, Pages 125-139. [3] M. Ando, R. Chabicovsky, and M. Haruta, “Optical hydrogen sensitivity of noble metal–tungsten oxide composite films prepared by sputtering deposition,” Sensors and Actuators B: Chemical, vol. 76, pp. 13-17, 2001. [4] Rui-Tao Wen, Claes G. Granqvist and Gunnar A. Niklasson, “Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films” Nature Materials volume 14, pages 996–1001 (2015). [5] Amirhossein Hasani, Quyet Van Le, Thang Phan Nguyen, Kyoung Soon Choi, Woonbae Sohn, Jang-Kyo Kim, Ho Won Jang and Soo Young Kim, “Facile Solution Synthesis of Tungsten Trioxide Doped with Nanocrystalline Molybdenum Trioxide for Electrochromic Devices”, Scientific Reports volume 7, Article number 13258 (2017). [6] Zhongqiu Tong, Haiming Lv, Xiang Zhang, Haowei Yang, Yanlong Tian, Na Li, Jiupeng Zhao and Yao Li, “Novel morphology changes from 3D ordered macroporous structure to V2O5 nanofiber grassland and its application in electrochromism” Scientific Reports volume 5, Article number: 16864 (2015). [7] G.A. Niklasson and C.G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater Chem., 2007, 17, pp. 127-156. [8] Linshuang Long and Hong Ye, “How to be smart and energy efficient: A general discussion on thermochromic windows” Scientific Reports volume 4, Article number: 6427 (2014). [9] Mark Peplow, “Smart windows block heat not light” Nature (2004). [10] Jonguk Yang, Taekyung Lim, Sang-Mi Jeong, and Sanghyun Ju,Information-Providing Flexible and Transparent Smart Window Display, ACS Appl. Mater. Interfaces 2021, 13, 17, 20689–20697. [11] 《科學發展》2018年9月,549期,67 ~ 72頁. [12] https://www.detail.de/de/de_de/artikel/dimmbares-tageslicht-25881/. [13] Paul M. S. Monk, Roger J. Mortimer, David R. Rosseinsky, “Electrochromism: Fundamentals and Applications”, General & Introductory Materials Science, September 2008, 239 Pages. [14] John R. Platt, "Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field", J. Chem. Phys. 34, 862 (1961). [15] A.I. Gavrilyuk, F.A. Chudnovski, Soviet Technical Physics Letters, Vol. 3, 1977, pp. 69. [16] Z. Lu, M.D. Levi, G. Salitra, Y. Gofer, E. Levi and D. Aurbach , “Basic electroanalytical characterization of lithium insertion into thin, well-crystallized V2O5 films” , Journal of Electroanalytical Chemistry 491, (2000), 211–221. [17] Phuriwat Jittiarporn, Simona Badilescu, Mohammed N. Al Sawafta, Lek Sikong, and Vo-Van Truong,"Electrochromic Properties of Sol-Gel Prepared Hybrid Transition Metal Oxides. A Short Review" , Journal of Science: Advanced Materials and Devices (2017). [18] Rabindar K.Sharma, Prabhat Kumar and G.B.Reddy, "Synthesis of vanadium pentoxide (V2O5) nanobelts with high coverage using plasma assisted PVD approach", Journal of Alloys and Compounds Volume 638, 25 July 2015, Pages 289-297. [19] Y. Fujita, K. Miyazaki, and C. Tatsuyama, "On the electrochromism of evaporated V2O5 films," Japanese journal of applied physics, vol. 24, p. 1082, 1985. [20] D.Wruck, S.Ramamurthi and M.Rubin, "Sputtered electrochromic V2O5 films", Thin Solid Films, 182(1989) 79-85. [21] Yingxi Lu, Liang Liu, Daniel Mandler and Pooi See Lee, "High Switching Speed and Coloration Efficiency of Titanium-Doped Vanadium Oxide Thin Film Electrochromic Devices", J. Mater. Chem. C, 2013. [22] Eric A.Meulenkamp, W.van Klinken, A.R.Schlatmann, "In-situ X-ray diffraction of Li intercalation in sol–gel V2O5 films", Solid State Ionics, Volume 126, Issues 3–4, 2 November 1999, Pages 235-244. [23] J.S.E.M.Svensson and C.G.Granqvist, “Electrochromic coatings for “smart windows” ”, Solar Energy Materials, Volume 12, Issue 6, December 1985, Pages 391-402. [24] https://nano.nstm.gov.tw/NanoConcept/Inspection/MaterialProduction.htm. [25] Jerzy Zarzycki, “Past and Present of Sol-Gel Science and Technology”, Journal of Sol-Gel Science and Technology volume 8, 1997, pages17–22. [26] M. Ebelmen, “On the artificial production of hydrophane”, C.R. Acad. Sc. 21, 502, 1845. [27] W. Geffcken and E. Berger, Ger. Patent 736,411, May 1939. [28] C. Jeffrey Brinker,George W. Scherer, “The Physics and Chemistry of Sol–Gel Processing” Book • 1990. [29] J. D. Mackenzie, in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L.L. Hench and D.R. Ulrich (Wiley, NY, 1984), pages 15–26. [30] Claes G. Granqvist, İlknur Bayrak Pehlivan, Gunnar A.Niklasson , “Electrochromics on a roll: Web-coating and lamination for smart windows” ,Surface & Coatings Technology Volume 336, 25 February 2018, Pages 133-138. [31] Mitsuhiro Hibino, Masaya Ugaji, Akira Kishimo, to, TetsuichiKudo, “Preparation and lithium intercalation of a new vanadium oxide with a two-dimensional structure”, Solid State Ionics Volume 79, July 1995, Pages 239-244. [32] https://www.jy-idea.com/tw/html/page/page.php?cid=21&cid2=108. [33] https://www.amtech.com.tw/custom_81215.html. [34] 王進威博士(2021)。中子粉末繞射簡介及其應用。物理雙月刊 。 [35] https://www.scincotaiwan.tw/zh-cht/TechnicalSupport_Detail-39.html. [36] Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, et al., "Solution-based fabrication of vanadium dioxide on F: SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications," Energy & Environmental Science, vol. 4, pages 4290-4297, 2011. [37] C. Chen, C. Dong, Y. Ho, C. Chang, D. Wei, T. Chan, et al., “Electronic and atomic structures of gasochromic V2O5 films,” EPL (Europhysics Letters), vol. 101, pages 17006, 2013. [38] M.Benmoussa, A.Outzourhit, A.Bennouna, E.L.Ameziane, “Electrochromism in sputtered V2O5 thin films: structural and optical studies”, Thin Solid Films , Volume 405, Issues 1–2, 22 February 2002, Pages 11-16. [39] Zhongqiu Tong, Na Li, Haiming Lv, Yanlong Tian, Huiying Qu, Xiang Zhang, Jiupeng Zhao, Yao Li, “Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device”, Solar Energy Materials & Solar Cells Volume 146, March 2016, Pages 135-143. [40] Sofiane Hassab, D. Eric Shen, Anna M. Ӧsterholm, Mathias Da Rocha, Giljoo Song,Yolanda Alesanco, Ana Viñuales, Aline Rougier, John R. Reynolds, Javier Padilla, “A new standard method to calculate electrochromic switching time”, Solar Energy Materials and Solar Cells, Volume 185, October 2018, Pages 54-60. [41] Angelique Jarry, Mitchell Walker, Stefan Theodoru, Leonard J. Brillson and Gary W. Rubloff, “Elucidating structural transformations in LixV2O5”, Chemistry of Materials , Chemistry of Materials, 2020, 32, 17, 7226–7236. [42] Marco Castriota, Nathalie Epervrier, Tiziana Barone, Giuseppe De Santo and Enzo Cazzanelli, “Evolution from vanadium pentoxide xerogel to sodium-containing vanadates in thin films on ITO-coated glasses”, Ionics, volume 13, pages205–211 (2007). [43] Dimitrios Maganas, Michael Roemelt, Michael Hävecker, Annette Trunschke, Axel Knop-Gericke, Robert Schlögl and Frank Neese “First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin–orbit coupled configuration interaction approaches”, Phys. Chem. Chem. Phys., Issue 19, 2013, pages, 7260-7276. [44] Luisa Whittaker, Hengsong Zhanga and Sarbajit Banerjee, “VO2 nanosheets exhibiting a well-defined metal–insulator phase transition”, J. Mater. Chem., 2009, Issue 19, pages 2968–2974. [45] https://www.newton.com.tw/wiki/晶體場理論. [46] Jesus M. Velazquez, Sarbajit Banerjee, “Catalytic Growth of Single-Crystalline V2O5 Nanowire Arrays”, Small 2009, 5, No. 9, pages 1025–1029. [47] J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, “K-edge absorption spectra of selected vanadium compounds”, Phys. Rev. B 30, November 1984, page 5596. [48] Stefano Passerhi, William H.Smyrl, Mario Berrettonib, Roberto Tossicib, Mauricio Rosolen, Roberto Marassi, Franco Decker, “XAS and electrochemical characterization of lithium intercalated V2O5 xerogels,” Solid State Ionics, vol. 90, 1996, pages 5-14. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信