系統識別號 | U0002-2407202311470000 |
---|---|
DOI | 10.6846/tku202300477 |
論文名稱(中文) | 存在多位自私挖礦者的區塊鏈網路之獲利分析 |
論文名稱(英文) | Revenue Analysis of Blockchain Networks with Two Selfish Miners |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 111 |
學期 | 2 |
出版年 | 112 |
研究生(中文) | 鄒亞倫 |
研究生(英文) | Ya-Lun Tsou |
學號 | 610410705 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2023-07-07 |
論文頁數 | 30頁 |
口試委員 |
指導教授
-
王聲葦(swwang.nuu@gmail.com)
共同指導教授 - 林其誼(chiyilin@mail.tku.edu.tw) 口試委員 - 陳世興 口試委員 - 林莊傑 |
關鍵字(中) |
比特幣 區塊鏈 自私挖礦 挖礦率 |
關鍵字(英) |
Bitcoin Blockchain Selfish mining Mining rate |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
在本文中,我們研究了兩個自私礦工在使用Proof-of-Work(PoW) 的區塊鏈中的獎勵。我們從網路和礦工的角度分析獎勵, 設計了一個模擬器來研究礦工之間的行為和礦工獲得的獎勵。我們首先觀察到,當兩個自私礦工的挖礦率之間的差距減少時,自私礦工獲益所需的總自私挖礦率會增加。當兩個自私礦工的挖礦率相同時,保證自私礦工獲益所需的總自私挖礦率的下限接近42%。我們還比較了不同挖礦率的自私礦工獲得的獎勵分配。可從模擬得知,強自私礦工將比弱自私礦工更能獲益。 如果強自私礦工的挖礦率佔優勢,強自私礦工將獲得大部分獎勵,網路變得不穩定。 |
英文摘要 |
In this thesis, we study the rewards in a Proof-of-Work blockchain with two selfish miners. We analyze the rewards from both the network and the miner’s perspectives. A simulator is implemented to study the behaviors between the miners and the reward for them. We first observed that the required total selfish mining rate for selfish miners to be profitable increases when the gap between the two mining rates of selfish miners decreases. When the two selfish miners have same mining rates, the required total selfish mining rate is close to 42% which is a lower bound to guarantee the profitability of selfish miners. We also compared the distributions of rewards earned by selfish miners with different mining rates. Simulations show that the strong selfish miner will be more profitable than the weak one. If the strong selfish miner has a dominant mining rate, he will earn most of the rewards and the network becomes unstable. |
第三語言摘要 | |
論文目次 |
第1章 概論 1 A. 比特幣與區塊鏈 1 B. 挖礦與共識機制 2 C. 工作量證明 3 D. 本文的研究內容 5 第2章 自私挖礦策略 6 A. 自私挖礦 6 B. 自私挖礦相關的研究 7 第3章 兩個自私礦工的挖礦策略與模擬設定 12 第4章 模擬結果 19 A. 自私礦工與誠實礦工獲得的總獎勵比較 19 B. 不同挖礦率的自私礦工所獲得的獎勵比較 21 C. 自私礦工的獲益檻值 23 第5章 結論 26 參考文獻 27 圖目錄 圖1:最長鏈原則 5 圖2:有一個自私礦工的區塊鏈中的礦工圖例 9 圖3:誠實礦工先挖出區塊 9 圖4:自私礦工先挖出一個區塊時,自私礦工將這個區塊保存在私鏈中 10 圖5:兩個分支鏈形成競爭局面 10 圖6:自私礦工的私鏈上有兩個區塊時,自私礦工將這兩個區塊發布出來 11 圖7:自私礦工的私鏈上有兩個以上的區塊時,自私礦工會將自己的區塊保密 11 圖8:私鏈和公鏈之間的差距等於1時,自私礦工會發布他所有的私鏈 11 圖9:有兩個自私礦工的區塊鏈中的礦工圖例 12 圖10:Alice/Bob先挖出一個區塊時,他們會將這個區塊保存在私鏈中 12 圖11:Alice/Bob只會在他的私鏈上挖掘下一個區塊 13 圖12:三條鏈競爭的局面 14 圖13:Alice/Bob發布他的私鏈 14 圖14:Alice和Bob的私鏈都比Henry多了一個區塊 15 圖15:兩個私鏈的競爭情況 15 圖16:Alice的私鏈比Henry多了一個區塊,Bob的私鏈比Henry多了兩個區塊 16 圖17:Alice發布他的私鏈,然後Bob再發布他的私鏈 16 圖18:自私礦工獲得的獎勵比例 19 圖19:Alice和Bob獲得之獎勵的比率 21 圖20:挖礦率較低的自私礦工獲得的獎勵 23 圖21:挖礦率中等或較高的自私礦工獲得的獎勵比例 23 表目錄 表1:ra 固定時 rb 的穩定性檻值 25 |
參考文獻 |
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review, p. 21260, 2008. [2] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Financial Cryptography and Data Security, N. Christin and R. Safavi-Naini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 436–454. [3] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generalizing selfish mining and combining with an eclipse attack,”in 2016 IEEE European Symposium on Security and Privacy (EuroS&P), 2016, pp. 305–320. [4] K. Nicolas, Y. Wang, G. C. Giakos, B. Wei, and H. Shen, “Blockchain system defensive overview for double-spend and selfish mining attacks: A systematic approach,” IEEE Access, vol. 9, pp. 3838–3857, 2021. [5] M. J. Jeyasheela Rakkini and K. Geetha, “Comprehensive overview on the deployment of machine learning, deep learning, reinforcement learning algorithms in selfish mining attack in blockchain,” in 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), 2022, pp. 1–5. [6] S.-N. Li, Z. Yang, and C. J. Tessone, “Mining blocks in a row: A statistical study of fairness in bitcoin mining,” in 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–4. [7] J. Lee and Y. Kim, “Preventing bitcoin selfish mining using transaction creation time,” in 2018 International Conference on Software Security and Assurance (ICSSA), 2018, pp. 19–24. [8] S. Reno and S. Sultana, “Preventing selfish mining in public blockchain using alarming block and block interval time approach,” in 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), 2022, pp. 988–993. [9] M. Saad, L. Njilla, C. Kamhoua, and A. Mohaisen, “Countering selfish mining in blockchains,” in 2019 International Conference on Computing, Networking and Communications (ICNC), 2019, pp. 360–364. [10] S. G. Motlagh, J. Misic, and V. B. Misic, “The impact of selfish mining on bitcoin network performance,” IEEE Transactions on Network Science and Engineering, vol. 8, no. 1, pp. 724–735, 2021. [11] Y.-F. Wen and C.-Y. Huang, “Exploration of mined block temporarily holding and enforce fork attacks by selfish mining pool in proof-of-work blockchain systems,” IEEE Access, vol. 10, pp. 61 159–61 174, 2022. [12] S.-Y. Chang, “Mining power misestimation in pow blockchain,” in 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C), 2020, pp. 148–152. [13] B. Jebari, K. Ibrahimi, M. Jouhari, and M. Ghogho, “Analysis of blockchain selfish mining: a stochastic game approach,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 4217–4222. [14] K. R and K. M. Pitchai, “Modeling and simulation of selfish mining attacks in blockchain network using evolutionary game theory,” in 2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2023, pp. 1016–1021. [15] H. Azimy and A. Ghorbani, “Competitive selfish mining,” in 2019 17th International Conference on Privacy, Security and Trust (PST), 2019, pp. 1–8. [16] S. Zhang, K. Zhang, and B. Kemme, “A simulation-based analysis of multiplayer selfish mining,” in 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–5. [17] S. Zhang, K. Zhang, and B. Kemme, “Analysing the benefit of selfish mining with multiple players,” in 2020 IEEE International Conference on Blockchain (Blockchain), 2020, pp. 36–44. [18] Q. Xia, W. Dou, T. Xi, J. Zeng, F. Zhang, J. Wei, and G. Liang,“The impact analysis of multiple miners and propagation delay on selfish mining,” in 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), 2021, pp. 694–703. [19] Q. Bai, X. Zhou, X. Wang, Y. Xu, X. Wang, and Q. Kong, “A deep dive into blockchain selfish mining,” in ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6 |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信