§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2406202520094500
DOI 10.6846/tku202500383
論文名稱(中文) 四邊鉸接固定之平板受雨滴衝擊之振動發電系統研究
論文名稱(英文) Study on a Vibration Energy Harvesting System of a Four-Sided Hinged Plate Impacted by Raindrops
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 航空太空工程學系碩士班
系所名稱(英文) Department of Aerospace Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 2
出版年 114
研究生(中文) 林威廷
研究生(英文) Wei-Ting Lin
學號 613430049
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-06-12
論文頁數 81頁
口試委員 指導教授 - 王怡仁(090730@mail.tku.edu.tw)
口試委員 - 田孟軒
口試委員 - 黃琮暉
關鍵字(中) 雨水能量採集系統
振動能量擷取系統
電源管理
拍擊力
非線性板
壓電片
關鍵字(英) Rain Energy Harvester
Vibration Energy Harvester
Power management
Impact forces
Nonlinear plate
Piezoelectric patch
第三語言關鍵字
學科別分類
中文摘要
本研究探討了一種利用雨水衝擊四邊鉸接固定的平板來進行振動能量擷取並轉換為電能的系統。研究的目的是利用自然界中隨處可見的雨水動能,通過振動引發壓電材料產生電能,以實現綠色能源的收集和利用。
在理論上,首先推導出非線性板的運動方程式,並與模擬雨滴隨機大小之外力,及四邊鉸接之邊界條件,帶入FORTRAN中進行理論數值解,最後通過壓電方程式來估算發電量。通過理論推導和Ansys Workbench軟體模擬比較平板之位,和壓電片發電量,並得出似結果,初步驗證理論的準確性。此外,本研究還加入了電源管理系統,對每次振動產生的電能進行優化處理,以提升發電效率並減少不必要的電能損失。
最後,本文還通過實驗與理論比較。結果表明實驗與理論結果相差距大,經過分析發現模擬雨滴之鋼珠掉落時會對於壓電片有撞擊的影響,電源管理的部分也受此影響,無法顯著提升其發電效率。而原先理論的部分,在加入此因素並修正理論後,理論與實驗之間誤差也大幅修正,佐證其理論的準確性,證實此類的雨滴發電研究必須考慮拍擊力。通過這些研究工作,本論文展示了雨水激發振動能量擷取系統的可行性,並且該系統在多雨環境中的應用前景廣泛,不僅適用於太陽能板的輔助發電,還可應用於雨遮、帳篷等結構上。
英文摘要
This study investigates a system that harnesses vibrational energy induced by raindrop impacts on a clamped rectangular plate with hinged boundaries on all four sides, converting it into electrical energy. The objective is to utilize the widely available kinetic energy of natural rainfall to generate electricity through the vibrations of piezoelectric materials, thereby achieving green energy harvesting and utilization.
Theoretically, the nonlinear motion equations of the plate are first derived and integrated with simulated raindrop impacts of random sizes and the boundary conditions of the four-edge hinged plate. These are implemented in FORTRAN for numerical solutions. The generated electrical power is then estimated using piezoelectric constitutive equations. By comparing the theoretical displacement results and estimated power output from the piezoelectric elements with simulations conducted using Ansys Workbench, the accuracy of the theoretical model is preliminarily verified. Additionally, a power management system is incorporated to optimize the electrical output from each vibration cycle, aiming to enhance energy harvesting efficiency and reduce unnecessary energy losses. 
Finally, experimental results are compared with theoretical predictions. A significant discrepancy is observed, and further analysis reveals that the impact of steel balls simulating raindrops introduces a collision force on the piezoelectric element, affecting both the mechanical response and the power management system, thereby limiting the improvement in power conversion efficiency. After incorporating this impact force into the theoretical model and modifying the analysis accordingly, the gap between theoretical and experimental results is substantially reduced, confirming the validity of the revised model. This also highlights the importance of considering impact forces in raindrop-induced energy harvesting systems. Through these investigations, this thesis demonstrates the feasibility of a rainwater-induced vibrational energy harvesting system. The system shows great potential for application in rain-prone environments—not only as an auxiliary power source for solar panels but also for integration into structures such as rain shelters, tents, and similar installations.
第三語言摘要
論文目次
目錄
目錄	IV
表目錄	VI
圖目錄	VII
第一章 緒論	1
一、1. 研究動機	1
一、2. 文獻回顧	2
一、3. 研究方法	13
第二章 理論模型之建立與分析	15
二、1. 運動方程式推導	15
二、2 非線性樑運動方程式無因次化推導	18
二、3 雨水動能推導	22
二、4 壓電片方程式理論模型建構	23
第三章 理論數值解與模擬比較	27
第四章 理論模型之建立與分析	33
四、1. 系統設計理念	33
四、2 硬體裝備與電子元件	42
四、3 實體電路	44
四、4  Arduino UNO 內部程式	46
第五章 實驗量測	48
五、1. 實驗設計	48
五、2 實驗結果	54
五、3 實驗結論	60
第六章 結論	64
參考文獻	67
附錄(一)壓電片之材料參數資料	71
附錄(二) 硬體裝備與電子元件參數資料	71
表目錄
表1 壓電片安裝在四邊與四角之理論電壓與軟體模擬比較誤差	32 
表2 未加入拍擊力理論與模擬與實驗之比較和誤差	60 
表3 加入拍擊力理論與實驗比較和誤差	63 
圖目錄
圖1板位移、內力示意圖	15
圖2板位移、力矩示意圖	16
圖3軟體模擬板結合壓電片圖	27
圖4-1 Ansys Workbench板受雨形變位移圖	28
圖4-2 Ansys Workbench板受雨形變位移圖	29
圖5-1數值解板受雨形變位移圖	29
圖5-2數值解板受雨形變位移圖	29
圖6數值解壓電片位於四邊之電壓與時間之響應圖	30
圖7 數值解壓電片位於四角之電壓與時間之響應圖	31
圖8壓電片電流等效電路(左)及壓電片電壓等效電路(右)之電路示意圖	33
圖9二極體組成之全橋整流器電路示意圖	34
圖10全橋整流器接上N-Channel MOSFET電路示意圖	34
圖11在升壓電路前串聯一個二極體電路示意圖	35
圖12 Arduino UNO示意圖	35
圖13電感輸入電容之電流與時間示意圖	38
圖14輸出電容之電流與時間示意圖	40
圖15 Arduino UNO實體圖	42
圖16 RBE01VYM6AFHTR參考圖	43
圖17 ALD212902PAL實體圖	43
圖18 ALD212902PAL內部參考圖	43
圖19 TK2R9E10PL,S1X實體圖	44
圖20 TK2R9E10PL,S1X內部參考圖	44
圖21四個RBE01VYM6AFHTR組成全橋整流器示意圖(a)和實體圖(b)	45
圖22實體電路參考圖(a)和實體圖(b)	46
圖23實驗裝置示意圖	49
圖24圓管	49
圖25轉軸	49
圖26支架	49
圖27四邊鉸接之平板正面圖(a)與反面圖(b)	50
圖28半齒輪圓盤正面(a)、反面(b)	51
圖29模擬落雨機制之裝置	51
圖30整體實驗裝置	52
圖31電源供應器	52
圖32 IMC	52
圖33電腦	53
圖34壓電片電壓與時間之響應圖	55
圖35壓電片整流後電壓與時間之響應圖	56
圖36經過 NMOS 1 (ALD212902PAL) 後電壓與時間之響應圖	57
圖37為圖36局部放大圖	57
圖38有無電源管理之差異比較	58
圖39經過升壓電路後不穩定電壓與時間之響應圖	59
圖40軟體模擬經過升壓電路後電壓與時間之響應圖	59
圖41壓電片位於四邊之電壓與時間之響應圖	62
圖42壓電片位於四角之電壓與時間之響應圖	62
參考文獻
參考文獻
[1]	T. Yildirim, M. H. Ghayesh, W. Li, and G. Alici, "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, vol. 71, pp. 435-449, 2017. doi:10.1016/j.rser.2016.12.073.
[2]	Y. Jia, "Review of nonlinear vibration energy harvesting: Duffing, bistability, parametric, stochastic and others," Journal of intelligent material systems and structures, vol. 31, no. 7, pp. 921-944, 2020. doi: 10.1177/1045389x20905989.
[3]	W. Yang and S. Towfighian, "A hybrid nonlinear vibration energy harvester," Mechanical Systems and Signal Processing, vol. 90, pp. 317-333, 2017. doi:10.1016/j.ymssp.2016.12.032.
[4]	Y. Tao, Z. Shengxi, C. Qingjie, Z. Wenming, and C. Liqun, "Some advances in nonlinear vibration energy harvesting technology," Chinese Journal of Theoretical and Applied Mechanics, vol. 53, no. 11, pp. 2894-2909, 2021. doi: 10.6052/0459-1879-21-474.
[5]	N. Wu, B. Bao, and Q. Wang, "Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output," Engineering Structures, vol. 235, p. 112068, 2021. doi:10.1016/j.engstruct.2021.112068.
[6]	H. Cao, X. Zeng, L. Wu, X. Wu, and Z. Zhang, "A hybrid wind and rainwater energy harvesting system for applications in sea-crossing bridges," Ocean Engineering, vol. 234, p. 109267, 2021. doi:10.1016/j.oceaneng.2021.109267.
[7]	B. Bao and Q. Wang, "A rain energy harvester using a self-release tank," Mechanical Systems and Signal Processing, vol. 147, p. 107099, 2021. doi:10.1016/j.ymssp.2020.107099.
[8]	Z.-Z. Ong, V.-K. Wong, and J.-H. Ho, "Performance enhancement of a piezoelectric rain energy harvester," Sensors and Actuators A: Physical, vol. 252, pp. 154-164, 2016. doi:10.1016/j.sna.2016.10.035.
[9]	H. J. Chilabi et al., "Rotational piezoelectric energy harvesting: a comprehensive review on excitation elements, designs, and performances," Energies, vol. 14, no. 11, p. 3098, 2021. doi:10.3390/en14113098.
[10]	V.-K. Wong, J.-H. Ho, and A.-B. Chai, "Performance of a piezoelectric energy harvester in actual rain," Energy, vol. 124, pp. 364-371, 2017. doi:10.1016/j.energy.2017.02.015.
[11]	A. Hadidi, "Proposal and design a comprehensive framework to provide water and energy from rain and precipitation," Water Resources and Industry, vol. 32, p. 100263, 2024. doi:10.1016/j.wri.2024.100263.
[12]	C.-H. Liaw and Y.-C. Chiang, "Framework for assessing the rainwater harvesting potential of residential buildings at a national level as an alternative water resource for domestic water supply in Taiwan," Water, vol. 6, no. 10, pp. 3224-3246, 2014. doi:10.1016/j.energy.2015.07.114.
[13]	M. A. Ilyas and J. Swingler, "Piezoelectric energy harvesting from raindrop impacts," Energy, vol. 90, pp. 796-806, 2015. doi:10.4028/www.scientific.net/AMR.1043.263.
[14]	V. K. Wong, J. H. Ho, and E. H. Yap, "Experimental study of a piezoelectric rain energy harvester," Advanced Materials Research, vol. 1043, pp. 263-267, 2014. doi:10.13044/j.sdewes.2014.02.0020.
[15]	Y. Miao and Y. Jia, "Hybrid decentralised energy for remote communities: Case studies and the analysis of the potential integration of rain energy," Journal of Sustainable Development of Energy, Water and Environment Systems, vol. 2, no. 3, pp. 243-258, 2014. doi:10.3390/w6103224.
[16]	M. M. El-Hebeary, M. H. Arafa, and S. M. Megahed, "Modeling and experimental verification of multi-modal vibration energy harvesting from plate structures," Sensors and Actuators A: Physical, vol. 193, pp. 35-47, 2013. doi:10.3390/w6103224.
[17]	F. Duvigneau, S. Koch, R. Orszulik, E. Woschke, and U. Gabbert, "About the vibration modes of square plate-like structures," Tech Mech, vol. 36, no. 3, pp. 180-189, 2016. doi: 10.24352/UB.OVGU-2017-004. 
[18]	U. Aridogan, I. Basdogan, and A. Erturk, "Random vibration energy harvesting on thin plates using multiple piezopatches," Journal of Intelligent Material Systems and Structures, vol. 27, no. 20, pp. 2744-2756, 2016. doi:10.1177/1045389X16635846.
[19]	Y. Wang, J. Duan, Y. Zhao, B. He, and Q. Tang, "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, vol. 125, pp. 995-1002, 2018. doi: 10.1016/j.renene.2018.03.034.
[20]	Y. Zhao, Z. Pang, J. Duan, Y. Duan, Z. Jiao, and Q. Tang, "Self-powered monoelectrodes made from graphene composite films to harvest rain energy," Energy, vol. 158, pp. 555-563, 2018. doi: 10.1016/j.energy.2018.05.138.
[21]	H. R. Zhu et al., "Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind," Nano Energy, vol. 14, pp. 193-200, 2015. doi:10.1016/j.nanoen.2014.11.041. 
[22]	M. Al Ahmad, "Piezoelectric water drop energy harvesting," Journal of electronic materials, vol. 43, pp. 452-458, 2014. doi:10.1007/s11664-013-2826-2
[23]	F. Viola, "Comparison among different rainfall energy harvesting structures," Applied Sciences, vol. 8, no. 6, p. 955, 2018. doi:10.3390/app8060955.
[24]	M. Edla, Y. Y. Lim, R. V. Padilla, and M. Deguchi, "An improved rectifier circuit for piezoelectric energy harvesting from human motion," Applied Sciences, vol. 11, no. 5, p. 2008, 2021. doi:10.3390/app11052008.
[25]	S. Lu and F. Boussaid, "A highly efficient P-SSHI rectifier for piezoelectric energy harvesting," IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5364-5369, 2015. doi:10.1109/TPEL.2015.2422717.
[26]	A. H. Nayfeh and P. F. Pai, "Linear and nonlinear structural mechanics," John Wiley & Sons, 2008.
[27]	P. Du, F.-F. Wang, and J. Wang, "A uniformly-valid asymptotic plate theory of growth with numerical implementation," International Journal of Mechanical Sciences, vol. 239, p. 107909, 2023. doi:10.1016/j.ijmecsci.2022.107909.
[28]	A. Rajora, A. Dwivedi, A. Vyas, S. Gupta, and A. Tyagi, "Energy harvesting estimation from the vibration of a simply supported beam," Int. J. Acoust. Vib, vol. 22, no. 2, pp. 186-193, 2017. doi:10.20855/ijav.2017.22.2463.
[29]	Wang, Y.-R.; Chu, M.-C. Analysis of double elastic steel wind driven magneto-electric vibration energy harvesting system. Sensors 2021, 21(21), 7364. doi:10.3390/s21217364.
[30]	Wang, Y.-R.; Kuo, C.-H. Enhancing Electrical Generation Efficiency through Parametrical Excitation and Slapping Force in Nonlinear Elastic Beams for Vibration Energy Harvesting. Sensors 2023, 23(17), 7610. doi:10.3390/s23177610.
[31]	Wang, Y.-R.; Chang, J.-W.; Lin, C.-Y. Analysis of a wind-driven power generation system with root slapping mechanism. Appl. Sci. 2024, 14, 482. doi:10.3390/app14020482.
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信