| 系統識別號 | U0002-2406202401420300 |
|---|---|
| DOI | 10.6846/tku202400326 |
| 論文名稱(中文) | 使用多標準決策和自然語言處理的永續服裝產品研究 |
| 論文名稱(英文) | A Study of Sustainable Apparel Products Using Multi-criteria Decision Making and Natural Language Processing |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 管理科學學系博士班 |
| 系所名稱(英文) | Doctoral Program, Department of Management Sciences |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 112 |
| 學期 | 2 |
| 出版年 | 113 |
| 研究生(中文) | 阮氏日明 |
| 研究生(英文) | Minh T.N. Nguyen |
| 學號 | 807625016 |
| 學位類別 | 博士 |
| 語言別 | 英文 |
| 第二語言別 | |
| 口試日期 | 2024-06-05 |
| 論文頁數 | 92頁 |
| 口試委員 |
指導教授
-
李旭華(timothyleeok@gmail.com)
口試委員 - 陳怡妃 口試委員 - 曹銳勤 口試委員 - 陳瑞陽 口試委員 - 涂嘉峪 |
| 關鍵字(中) |
永續時尚 Instagram 影響者 自然語言處理 新一代紡織品 多標準決策 |
| 關鍵字(英) |
sustainable fashion Instagram influencer Natural Language Processing new-generation textiles Multi-criteria Decision Making |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
隨著時尚產業面臨環境和社會影響,永續時尚的概念越來越被大眾所接受。為了在市場上獲得相對於快時尚業務的競爭優勢,永續時尚企業可以優化其價值鏈。在本研究中,我們將研究改善永續服裝產品的營運活動以及行銷和銷售活動。 價值鏈中的營運活動包括設計、裁剪和將布料組裝成服裝產品。永續時尚的未來可能會朝著永續紡織品邁出重大一步。然而,這方面的研究仍然有限。因此,本研究的第一階段使用多標準決策來評估購買新一代紡織產品的標準。首先,透過回顧以往研究的主要成果,建立了4個屬性和10個子屬性的層次結構和網絡結構。其次,利用層次分析法(AHP)和網絡分析法(ANP)來確定每個屬性和子屬性的重要性權重。 6位在永續時尚領域擁有7年以上經驗的專家參與了這一步驟。研究結果表明,專家將製造流程列為選擇新一代紡織品時最關鍵的因素。此外,耐用性和感官是第二和第三重要標準,而價格被認為是最不重要的。對於子屬性,道德勞動實踐、持久、水和能源消耗以及可生物降解被認為是重要的。這結果顯示新一代紡織品的研發應聚焦在這些面向。 另一方面,價值鏈中的行銷和銷售活動向潛在客戶通報產品並說服他們購買。社交網路服務(SNS)因其以視覺為中心的平台和廣泛的用戶群而成為行銷的強大工具。 Instagram 是最受歡迎的 SNS 平台之一,在促進商業行銷方面發揮著重要作用。 Instagram 影響者是指因其技能、魅力或創新而在 Instagram 上獲得大量粉絲的人。近年來,專門從事永續時尚的影響者數量不斷增加。他們透過永續的時尚內容影響大眾,但目前尚未有這方面的研究。因此,本研究的第二階段旨在透過研究永續時尚影響者 Instagram 貼文和追隨者評論中的基本主題來解決這一差距。本研究使用了自然語言處理技術。我們分析了從 10 位 Instagram 永續時尚影響者收集的 400則貼文內容的資料集。首先,我們使用稱為潛在狄利克雷分配(LDA)的主題建模技術來識別抽象主題。此外,我們根據比例並使用Rank-1方法對這些問題進行排名。其次,為了確定評論中使用者的情緒基調,我們使用 SentiStrength 軟體進行情緒分析。結果,找到了 9 個主題:服裝推薦、永續時尚實施、時裝週、黑色星期五活動、有害勞動行為、永續時尚業務、節儉時尚/升級改造服裝、氣候變遷和合作。總共有 34.7% 的正面評論、52.3% 的中立評論和 13.0% 的負面評論。永續時尚業務經理在未來與影響者合作時可以考慮這些結果 |
| 英文摘要 |
As the fashion industry faces with its environmental and social impacts, the concept of sustainable fashion is accepted by the public more and more widely. To gain competitive advantages over fast fashion business in the market, sustainable fashion businesses can optimize their Value Chain. In this research, we will study the aspects of improving Operations activities and Marketing and Sales activities for sustainable apparel products. The Operations activities in Value Chain includes designing, cutting and assembling the fabric into an apparel product. Future of sustainable fashion may see a significant move toward sustainable textiles. However, the research in this area is still limited. Therefore, the first phrase of this study evaluates criteria in purchasing new-generation textile products using Multi-criteria decision making. First, through reviewing key findings from previous researches, a hierarchy structure and network structure of 4 attributes and 10 sub-attributes was established. Second, using the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP), the importance weight of each attribute and sub-attributes was determined. 6 experts with over seven years in the field of sustainable fashion took part in this step. The findings demonstrated that experts rank Manufacturing process as the most crucial factor when choosing new-generation textiles. Furthermore, Durability and Sensory as the second and third important criteria, while Price is deemed to be of the least important. For sub-attributes, Ethical Labor Practices, Long-lasting, Water and Energy Consumption and Biodegradable are considered important. This result indicates that the new-generation textile research and development should focus in those aspects. On the other hands, Marketing and Sales activities in Value Chain inform potential customers about the product and persuade them to buy it. Social Network Service (SNS) has become a powerful tool in marketing due to its visual-centric platform and extensive user base. Instagram, one of the most popular SNS platform, plays a significant role in boosting business marketing. Instagram influencers are people who have gained a large following on Instagram because of their skill, charisma, or innovation. In recent year, the number of influencers specialized in sustainable fashion is increasing. Their influence the public with sustainable fashion content. However, there have not been research on this aspect. Therefore, the second phase of this study aims to address this gap by examining the underlying topics in sustainable fashion influencers Instagram posts and follower’s comment. Natural Language Processing techniques were used in this study. A dataset of 400 post contents gathered from 10 Instagram sustainable fashion influencers was analyzed. First, we identify the abstract topics using a topic modeling technique called Latent Dirichlet Allocation (LDA). Furthermore, we rank these issues based on proportion. Second, in order to determine the user's emotional tone in the comments, we employ sentiment analysis with SentiStrength software. As a result, 9 topics were found: Outfits recommendation, Sustainable fashion implementation, Fashion Week, Black Friday event, Harmful labor practices, Sustainable fashion business, Thrift fashion/ upcycling clothes, Climate change and Collaboration. In total, there are 34.7% positive comments, 52.3% neutral comments and 13.0% negative comments towards those topics. Sustainable fashion business managers can consider these results when collaborating with influencers in the future. |
| 第三語言摘要 | |
| 論文目次 |
Table of Contents Table of Contents i List of Tables iii List of Figures iv Chapter 1 Introduction 1 1.1 Research background and objectives 1 1.2 Research questions 5 1.3 Research process 6 Chapter 2 The first study 8 2.1 Literature review 8 2.1.1 New-generation textiles 8 2.1.2 Instrumental attributes 10 2.2 Methods 13 2.2.1 Research process 13 2.2.2 Selecting sub-attributes under Manufacturing process 13 2.2.3 Selecting sub-attributes under Durability 15 2.2.4 Selecting sub-attributes under Sensory: Touch and Sight 16 2.2.5 Selecting sub-attributes under Price 17 2.2.6 Analytic Hierarchy Process 21 2.2.7 Analytic Network Process 25 2.3 Results 27 2.3.1 Analytic Hierarchy Process 27 2.3.2 Analytic Network Process 37 Chapter 3 The second study 48 3.1 Literature review 48 3.1.1 Instagram influencers 48 3.1.2 Natural language processing 50 3.2 Methods 51 3.2.1 Collecting data 51 3.2.2 Text pre-processing 57 3.2.3 Topic modelling with LDA 59 3.2.4 Sentiment analysis 60 3.3 Results 61 3.3.1 Finding topics 61 3.3.2 Topic distribution 66 3.3.3 Topic ranking 67 3.3.4 Applying SentiStrength 69 Chapter 4 Discussion 72 4.1 The first study 72 4.2 The second study 75 Chapter 5 Managerial implications, limitations and future research 76 5.1 Managerial implications 76 5.2 Limitations and future research 77 References 79 List of Tables Table 1 Attributes and sub-attributes with definitions 19 Table 2 Saaty’s fundamental scale. Source: Saaty (1987) 23 Table 3 Random Index (RI). Source Saaty (2008) 24 Table 4 Descriptive data of interview experts 28 Table 5 Pairwise comparison of four attributes after geometric 30 Table 6 Weights and ranking of each attribute 31 Table 7 Calculating the consistency ratio (CI) 32 Table 8 Relative weights of sub-attributes 35 Table 9 The pairwise comparisons of attributes with respect to “Manufacturing process” 39 Table 10 The pairwise comparisons of attributes with respect to “Durability” 39 Table 11 The pairwise comparisons of attributes with respect to “Sensory” 39 Table 12 The pairwise comparisons of attributes with respect to “Price” 39 Table 13 The super-matrix of attributes before convergence 40 Table 14 ANP ranking of attributes 41 Table 15 The super matrix of sub-attributes before convergence 44 Table 16 The super-matrix of sub-attributes after convergence 46 Table 17 Descriptive statistics value of Instagram influencers accounts and posts 55 Table 18 A comparison of a sentence’s before and after text pre-processing 59 Table 19 Top 30 words in each 9 topics 64 Table 20 Topic description 65 Table 21 Topic ranking by proportions 69 Table 22 Comparisons of the finding of AHP and ANP 73 List of Figures Figure 1 Porter’s Value Chain Model (Source: Porter, 1985) 2 Figure 2 Research process 7 Figure 3 AHP model for ranking attributes and sub-attributes 27 Figure 4 AHP questionnaire for attributes 29 Figure 5 Experts’ opinions of 4 attributes 30 Figure 6 Normalized pairwise comparison matrix and achieve weights in MS Excel 31 Figure 7 AHP questionnaire for sub-attributes 33 Figure 8 Geometric values of sub-attributes pairwise comparison 34 Figure 9 The interdependence among attributes 37 Figure 10 ANP questionnaire for attribute 38 Figure 11 Input value for comparisons with respect to Manufacturing process 40 Figure 12 The super matrix of attributes after convergence 41 Figure 13 The interdependence among sub-attributes 42 Figure 14 Example of ANP questionnaire for sub-attributes 42 Figure 15 The pairwise comparisons of each sub-attribute 43 Figure 16 Inputting sub-attributes network in SuperDecisions software and ANP results 45 Figure 17 Searching for Instagram influencers 52 Figure 18 Example of an Instagram post scraping 54 Figure 19 Example of comments under influencer’s post 57 Figure 20 Latent Dirichlet Allocation (Source: Blei et al, 2003) 60 Figure 21 Coding for text pre-processing 61 Figure 22 Coding for finding topics number 62 Figure 23 LDA tuning 62 Figure 24 Coding for listing top 30 words in each topic 63 Figure 25 Coding for topic distribution 66 Figure 26 Frequency distributions of topics in each Instagram influencer 66 Figure 27 Coding for topic ranking 68 Figure 28 Sentiment classification distribution of users comment in each account post 71 Figure 29 Sentiment classification distribution of users comment in the whole corpus 71 |
| 參考文獻 |
Abidin, C. (2015). Communicative intimacies: Influencers and Perceived Interconnectedness. Ada: A Journal of Gender, New Media, and Technology, 8, 1-16. Albalawi, R., Yeap, T.H., & Benyoucef, M. (2020). Using Topic Modeling Methods for Short-Text Data: A Comparative Analysis. Frontiers in Artificial Intelligence, 3. Allen, M.W., Ng, S.H., & Wilson, M. (2002). A functional approach to instrumental and terminal values and the value‐attitude‐behaviour system of consumer choice. European journal of Marketing Allwood, J. M., Laursen, S. E., De Rodriguez, C. M., & Bocken, N. M. P. (2006). Well Dressed? The Present and Future Sustainability of Clothing and Textiles in the UK. Cambridge University Institute of Manufacturing: Cambridge Andersson, V., & Jandér, L. (2016, July 7). Social Media, Insta-Culture & The Reinvention of Fashion Week [Master's thesis, University of Borås]. http://www.diva-portal.org/smash/get/diva2:941385/FULLTEXT01.pdf Araujo, T., Neijens, P., & Vliegenthart, R. (2017). Getting the word out on Twitter: the role of influentials, information brokers and strong ties in building word-of-mouth for brands. International Journal of Advertising, 36(3), 496–513. https://doi.org/10.1080/02650487.2016.1173765 Arun, R., Suresh, V., Madhavan, C.E., & Murty, M.N. (2010). On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berrios, R., Totterdell, P., & Kellett, S. (2015). Eliciting mixed emotions: a meta-analysis comparing models, types, and measures. Frontiers in psychology, 6. https://doi.org/10.3389/fpsyg.2015.00428 Blasi, S., Brigato, L., & Sedita, S.R. (2020). Eco-friendliness and fashion perceptual attributes of fashion brands: An analysis of consumers’ perceptions based on twitter data mining. Journal of Cleaner Production, 244, 118701. Blei, D., Ng, A., & Jordan, M. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research,3. 993-1022. Busalim, A., Fox, G., & Lynn, T. (2022). Consumer behavior in sustainable fashion: a systematic literature review and future research agenda. International Journal of Consumer Studies. Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72, 1775-1781. Celikik, M., Kirmse, M., Denk, T.I., Gagliardi, P., Mbarek, S., Pham, D., & Peleteiro-Ramallo, A. (2022). Outfit Generation and Recommendation - An Experimental Study. ArXiv, abs/2211.16353. Cerchia, R. E., & Piccolo, K. (2019). The ethical consumer and codes of ethics in the fashion industry. Laws, 8(4), 23. Change, C. (2001). Climate change. Synth. Rep. Chung, S., Lee, A.H., & Pearn, W.L. (2005). Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. International Journal of Production Economics, 96, 15-36. Crewe, L. (2017). The Geographies of Fashion: Consumption, Space, and Value. London: Bloomsbury de Veirman, M., Cauberghe, V., & Hudders, L. (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. International Journal of Advertising, 36, 798 - 828. Deckers, J., Manshoven, S. & Mortensen, L. F. (2023). The role of bio-based textile fibres in a circular and sustainable textiles system. ETC-CE Report 2023/5. https://vito.be/sites/vito.be/files/the_role_of_bio-based_textile_fibres_in_a_circular_and_sustainable_textiles_system_2023.pdf Deveaud, R., SanJuan, E., & Bellot, P. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document Numérique, 17, 61-84. Dittmar, H. (1992) The Social Psychology of Material Possessions: To Have Is to Be. Hemel Hampstead, Harvester Wheatsheaf and St Martin’s Press, New York. Dorce, L. C., da Silva, M. C., Mauad, J. R. C., de Faria Domingues, C. H., & Borges, J. A. R. (2021). Extending the theory of planned behavior to understand consumer purchase behavior for organic vegetables in Brazil: The role of perceived health benefits, perceived sustainability benefits and perceived price. Food Quality and Preference, 91, 104191. Ellis, J. L., McCracken, V. A., & Skuza, N. (2012). Insights into willingness to pay for organic cotton apparel. Journal of Fashion Marketing and Management: An International Journal, 16(3), 290–305. doi:10.1108/13612021211246053 European Environment Agency. (n.d). biodergradable. https://www.eea.europa.eu/help/glossary/eea-glossary/biodegradable Fletcher, K. (2009). Systems change for sustainability in textiles. Sustainable textiles, 369-380. Woodhead Publishing. Fletcher, K. (2012). Durability, fashion, sustainability: The processes and practices of use. Fashion practice, 4(2), 221-238. Fletcher, K. (2015). The Handbook of Sustainability and Fashion. Fletcher, K. (2016) Craft of Use. Post-Growth Fashion. London: Routledge. Forman, E.H., & Gass, S.I. (2001). The Analytic Hierarchy Process - An Exposition. Oper. Res., 49, 469-486. Forman, E.H., & Gass, S.I. (2001). The Analytic Hierarchy Process - An Exposition. Operational Research., 49, 469-486. Gärling, A., & Thøgersen, J. (2001). Marketing of electric vehicles. Business Strategy and the Environment, 10(1), 53-65. Geiger, S.M., & Keller, J. (2018). Shopping for Clothes and Sensitivity to the Suffering of Others: The Role of Compassion and Values in Sustainable Fashion Consumption. Environment and Behavior, 50, 1119 - 1144. Gordon, J. F., & Hill, C. (2015). Sustainable fashion: Past, present and future. Bloomsbury Publishing. Greco, S. (2022). Twitter Activists’ Argumentation Through Subdiscussions: Theory, Method and Illustration of the Controversy Surrounding Sustainable Fashion. Argumentation 37, 1–23. https://doi.org/10.1007/s10503-022-09579-1 Griffiths, T.L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101, 5228 - 5235. Haines, S., Fares, O.H., Mohan, M., & Lee, S.H. (2023). Social media fashion influencer eWOM communications: understanding the trajectory of sustainable fashion conversations on YouTube fashion haul videos. Journal of Fashion Marketing and Management: An International Journal. Hancock, K.E. (1993). 'Can pay? Won't pay?' or Economic Principles of 'Affordability'. Urban studies, 30(1), 127-145. Howe, L. C., Carr, P. B., & Walton, G. M. (2021). Normative appeals motivate people to contribute to collective action problems more when they invite people to work together toward a common goal. Journal of Personality and Social Psychology, 121(2), 215. Hultén, B., Broweus, N., & van Dijk, M. (2009). What is Sensory Marketing?. In: Sensory Marketing. Palgrave Macmillan, London. Iwanow, H., McEachern, M.G., & Jeffrey, A. (2005). The influence of ethical trading policies on consumer apparel purchase decisions: A focus on The Gap Inc. International Journal of Retail Distribution Management. Jin, V. S., Ryu, E., & Muqaddam, A. (2021). I trust what she's #endorsing on Instagram: moderating effects of parasocial interaction and social presence in fashion influencer marketing. Journal of Fashion Marketing and Management. Johnstone, M. L. & Tan, L. (2015). Exploring the gap between consumers’ green rhetoric and purchasing behavior. Journal of Business Ethics, 132, 2. DOI: 10.1007/s10551-014- 2316-3 Kanai, H., Morishima, M., Nasu, K., Nishimatsu, T., Shibata, K., & Matsuoka, T. (2011). Identification of principal factors of fabric aesthetics by the evaluation from experts on textiles and from untrained consumers. Textile research journal, 81(12), 1216-1225. Kim, J., Kang, S., & Lee, K.H. (2020). How social capital impacts the purchase intention of sustainable fashion products. Journal of Business Research, 117, 596-603. Kwon, H. J., & Brinthaupt, T. M. (2015). The motives, characteristics and experiences of US Black Friday shoppers. Journal of Global Fashion Marketing, 6(4), 292–302. https://doi.org/10.1080/20932685.2015.1070681 Lago, N.C., Marcon, A., Ribeiro, J.L.D., Medeiros, J.F. de, Brião, V.B., & Antoni, V.L. (2020). Determinant attributes and the compensatory judgement rules applied by young consumers to purchase environmentally sustainable food products. Sustainable Production Consumption, 23, 256-273 Lee, E., & Weder, F. (2021). Framing Sustainable Fashion Concepts on Social Media. An Analysis of #slowfashionaustralia Instagram Posts and Post-COVID Visions of the Future. Sustainability. Leszinski, R., & Marn, M. V. (1997). Setting value, not price. Industrial Launderer, 48, 51-58. Lundblad, L., & Davies, I. A. (2015). The values and motivations behind sustainable fashion consumption. Journal of Consumer Behaviour, 15(2), 149-162. Mackenzie, D., Moss, L., Engelhardt, J., & Martyn, R. (1997). Green design: design for the environment. Books Nippan. Meade, L.M., & Sarkis, J. (1998). Strategic analysis of logistics and supply chain management systems using the analytical network process. Transportation Research Part E-logistics and Transportation Review, 34, 201-215. Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem, 22 (17), 5519–5558. doi:10.1039/d0gc01647k Milanesi, M., Kyrdoda, Y., & Runfola, A. (2022). How do you depict sustainability? An analysis of images posted on Instagram by sustainable fashion companies. Journal of Global Fashion Marketing, 13, 101 - 115. Mirkin, B. G. (1979). Group Choice. John Wiley & Sons, New York. Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., & Hinrichsen, G. (2004). A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromolecular Materials and Engineering, 289, 955-974. Moon, K. K. L., Lai, C. S. Y., Lam, E. Y. N., & Chang, J. M. T. (2014). Popularization of sustainable fashion: barriers and solutions. The Journal of the Textile Institute, 106(9), 939-952. Mukherjee, S. (2015). Environmental and social impact of fashion: Towards an eco-friendly, ethical fashion. International Journal of Interdisciplinary and Multidisciplinary Studies, 2(3), 22-35. Muthu, S.S. (2014). Environmental and social aspects of textiles and clothing supply chain. Nayak, R., Singh, A., Panwar, T., & Padhye, R. (2019). A review of recent trends in sustainable fashion and textile production. Current Trends in Fashion Technology & Textile Engineering, 4(5), 101-118. Niinimäki, K. (2010). Eco-clothing, consumer identity and ideology. Sustainable Development, 18, 150-162. Niinimäki, K. (2012). Proactive fashion design for sustainable consumption. Nordic Textile Journal, 1, 60-69. Niinimäki, K. (2015). Ethical foundations in sustainable fashion. Textiles and Clothing Sustainability, 1(1), 1-11. Niinimäki, K., & Hassi, L. (2011). Emerging design strategies in sustainable production and consumption of textiles and clothing. Journal of Cleaner Production, 19, 1876-1883. Pandit, P., Nadathur, G. T., & Jose, S. (2019). Upcycled and low-cost sustainable business for value-added textiles and fashion. In Circular Economy in Textiles and Apparel, 95-122. Woodhead Publishing. Pattanayak, A. (2023). Coffee fibres from coffee waste. In The Textile Institute Book Series, Sustainable Fibres for Fashion and Textile Manufacturing, 287-307. Woodhead Publishing, Porter, M.E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. Rana, S., Pichandi, S., Parveen, S., & Fangueiro, R. (2014). Natural Plant Fibers: Production, Processing, Properties and Their Sustainability Parameters. In: Muthu, S. (eds) Roadmap to Sustainable Textiles and Clothing. Textile Science and Clothing Technology. Springer, Singapore. Reid, W. V., Ali, M. K., & Field, C. B. (2019). The future of bioenergy. Global Change Biology, 26 (1), 274–286. doi:10.1111/gcb.14883 Reiley, K., & DeLong, M. (2011). A consumer vision for sustainable fashion practice. Fashion Practice, 3(1), 63-83. Rese, A., Baier, D., & Rausch, T.M. (2021). Success factors in sustainable textile product innovation: An empirical investigation. Journal of Cleaner Production. Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical modelling, 9(3-5), 161-176. Saaty, T. L. (1978). Modeling unstructured decision problems – the theory of analytical hierarchies. Mathematics and Computers in Simulation, 20(3), 147-158. Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill Book Co., New York. Saaty, T. L. (1996). Decision making with dependence and feedback: the analytic network process: the organization and prioritization of complexity. Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process. Int. J. Services Sciences Int. J. Services Sciences. 1. 83-98. 10.1504/IJSSCI.2008.017590. Samanta, K. K., Pandit, P., Samanta, P., & Basak, S. (2019). Water consumption in textile processing and sustainable approaches for its conservation. Water in textiles and fashion, 41-59. Woodhead Publishing. Sandoval, S.S., Amenábar, A., Toledo, I., Silva, N., & Contreras, P. (2024). Advances in the Sustainable Development of Biobased Materials Using Plant and Animal Waste as Raw Materials: A Review. Sustainability, 16(3), 1073. Santiago, J. K., & Castelo, I. M. (2020). Digital influencers: An exploratory study of influencer marketing campaign process on Instagram. Online Journal of Applied Knowledge Management. Schuitema, G., Anable, J., Skippon, S., & Kinnear, N. (2013). The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles. Transportation Research Part A: Policy and Practice, 48, 39-49. Senft, T. M. (2008). Camgirls: celebrity and community in the age of social networks. Peter Lang Publishing. Seo, M.J., & Kim, M. (2019). Understanding the purchasing behaviour of second-hand fashion shoppers in a non-profit thrift store context. International Journal of Fashion Design, Technology and Education, 12, 301 - 312. Sherburne, A. (2009). Achieving sustainable textiles: a designer’s perspective. In Sustainable Textiles. Life Cycle and Environmental Impact (pp. 3-32). Woodhead Publishing. Shin, D., Abdyrazakova, A., Ababayev, Y., & Kim, B. (2023). Identifying the needs and wishes of generation Z regarding clothing maintenance. 한국 HCI 학회 학술대회, 208-212. Sun, J. J., Bellezza, S., & Paharia, N. (2021). Buy less, buy luxury: Understanding and overcoming product durability neglect for sustainable consumption. Journal of Marketing, 85(3), 28-43. Testa, D.S., Bakhshian, S., & Eike, R.J. (2021). Engaging consumers with sustainable fashion on Instagram. Journal of Fashion Marketing and Management, 25(4), 569-584. Texintel. (2020) Lenzing Survey shows that “Transparency” is key for clothing and home textiles brands to win consumer trust and confidence, with “Eco-friendly” and “Biodegradable” being favorable terms that increase likelihood of purchase. https://www.texintel.com/eco-news/lenzing-global-survey-shows-that-transparency-is-key-for-clothing-and-home-textiles-brands-to-win-consumer-trust-and-confidence Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., & Kappas, A. (2010). Sentiment Strength Detection in Short Informal Text. Journal of the American Society for Information Science and Technology, 61, 2544-2558. 10.1002/asi.21416. Thelwall, M.A. (2017). The Heart and Soul of the Web? Sentiment Strength Detection in the Social Web with SentiStrength. In: Holyst, J. (eds) Cyberemotions. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-43639-5_7 Thelwall, M.A., Buckley, K., & Paltoglou, G. (2012a). Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63, 163-173. Thelwall, M.A., Sud, P., & Vis, F. (2012b). Commenting on YouTube videos: From guatemalan rock to El Big Bang. Journal of the American Society for Information Science and Technology, 63, 616-629. Tomkova, A., Ondrijova, I., & Ratnayake-Kascakova, D. (2022). Assessment Of Selected Sensory Attributes And Their Effect For Customer Purchasing Behavior. Economic and Social Development: Book of Proceedings; Varazdin, Venkateshwaran, N., & Elayaperumal, A. (2010). Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites, 29, 2387 - 2396. Vilares, D., Thelwall, M.A., & Alonso, M.A. (2015). The megaphone of the people? Spanish SentiStrength for real-time analysis of political tweets. Journal of Information Science, 41, 799 - 813. Wagner, M., Curteza, A., Chen, Y., Thomassey, S., & Zeng, X. (2018). Environmentally-friendly perception of fashion products: a Kansei study. In Proceedings of the 7th International Conference on Kansei Engineering and Emotion Research 2018: KEER 2018, 19-22 March 2018, Kuching, Sarawak, Malaysia (pp. 369-378). Springer Singapore. Wang, Y., Burke, M., & Kraut, R.E. (2013). Gender, topic, and audience response: an analysis of user-generated content on facebook. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Watts, D.J., & Dodds, P.S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 34, 441-458. Xu, A., Qi, T., & Dong, X. (2020). Analysis of the Douban online review of the MCU: based on LDA topic model. Journal of Physics: Conference Series, 1437. Yüksel, İ., & Dağdeviren, M. (2007), Using the analytic network process (ANP) in a SWOT analysis-A case study for a textile firm. Information Sciences, 177(16), 3364-3382. Zakikhani, P., Zahari, R., Sultan, M.T., & Majid, D.L. (2014). Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design, 63, 820-828. Zhang, X., & Dong, D. (2009). Ways of Identifying the Opinion Leaders in Virtual Communities. International Journal of Biometrics, 3, 21. Zimmerman, J. (1979). 1978 Competitive Manuscript Award: The Costs and Benefits of Cost Allocations. Accounting Review: p. 504-521. Zou, L., & Song, W.W. (2016). LDA-TM: A two-step approach to Twitter topic data clustering. 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), 342-347. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信