§ Browsing ETD Metadata
  
System No. U0002-2309202111460400
Title (in Chinese) 聚甲基丙烯酸甲酯/釹鐵硼顆粒型複合材料之製造及性能
Title (in English) Fabrication and properties of polymethyl methacrylate/NdFeB particulate composites
Other Title
Institution 淡江大學
Department (in Chinese) 機械與機電工程學系碩士班
Department (in English) Department of Mechanical and Electro-Mechanical Engineering
Other Division
Other Division Name
Other Department/Institution
Academic Year 109
Semester 2
PublicationYear 110
Author's name (in Chinese) 賈欣樺
Author's name(in English) Xin-Hua Jia
Student ID 609370035
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2021-07-02
Pagination 83page
Committee Member advisor - 林清彬
co-chair - 張子欽
co-chair - 陳冠辰
Keyword (inChinese) 聚甲基丙烯酸甲酯
NdFeB
複合材料
磁滯曲線
透光率
Keyword (in English) Polymethyl methacrylate
NdFeB
composite material
hysteresis curve
transmittance
Other Keywords
Subject
Abstract (in Chinese)
釹鐵硼薄膜是一種非常有吸引力的材料,適用於光電工程和電子學,以及需要高矯頑力、高剩磁和高可見光透射率的高科技設備。本研究使用直流濺射將退火後的 Ti/NdFeB/Ti 薄膜與聚甲基丙烯酸甲酯板材複合,經過 20 次反覆熱壓摺疊,再經過噴砂和熱壓得到大面積的聚甲基丙烯酸甲酯/Ti/ NdFeB/Ti顆粒型片狀複合材料,並研究該複合材料的磁性及光學性質。通過UV-Vis透光率量測和SQUID磁性量測,我們發現該複合材料在可見光範圍內具有約65%的透光率,在平行及垂直薄膜方向的飽和磁化強度和矯頑力分別為21.3 emu/cm3、307.8 Oe及28.3 emu/cm3、366 Oe,該複合材料具有可塑性,可加工成曲面的透明磁性板材。
Abstract (in English)
NdFeB thin film is a very attractive material for applications in optical-electrical engineering and in electronics, for hightech devices where high coercive field, high remanence and high visible light transmittance are needed.In this study, DC sputtering was used to composite the annealed Ti/NdFeB/Ti film with the polymethyl methacrylate sheet, and after 20 times of repeated hot pressing and folding, then sandblasting and hot pressing to obtain a large area of polymethyl methacrylate /Ti/NdFeB/Ti granular flake composite material, and study the magnetic and optical properties of the composite material. Through UV-Vis transmittance measurement and SQUID magnetic measurement, we found that the composite material has a transmittance of about 65% in the visible light range, and the saturation magnetization and coercivity in the parallel and perpendicular directions of the film are 21.3 emu/cm3, 307.8 Oe and 28.3 emu/cm3, 366 Oe, respectively. The composite material has plasticity and can be processed into curved transparent magnetic plates.
Other Abstract
Table of Content (with Page Number)
第一章	緒論.....1
1.1.	前言.....1
1.2.	研究動機與目的.....6
第二章	文獻回顧與理論基礎.....8
2.1.	文獻回顧.....8
2.1.1.	透明磁性薄膜.....8
2.1.2.	NdFeB磁性薄膜.....11
2.1.2.1.	NdFeB薄膜製作方式.....11
2.1.2.2.	緩衝層對NdFeB薄膜磁性的影響.....12
2.1.2.3.	NdFeB薄膜不同組成比的磁性能.....14
2.1.2.4.	NdFeB膜厚對磁性能的影響.....15
2.1.2.5.	NdFeB多層膜之磁性能.....17
2.1.2.6.	退火後的結構及磁性能.....19
2.1.3.	磁性薄膜的光學性質.....21
2.1.4.	磁性薄膜的機械性能.....22
2.2.	理論基礎.....23
2.2.1.	磁性物質簡介.....23
2.2.2.	磁域(Magnetic domain).....24
2.2.3.	磁滯現象(Hysteresis).....25
2.2.4.	磁異向性(Magnetic anisotropy).....26
2.2.5.	磁壁釘扎(Domain wall pinning).....26
2.2.6.	米氏散射理論.....28
第三章	實驗方法與薄膜分析設備.....29
3.1.	實驗流程圖.....29
3.2.	樣品製備.....30
3.2.1.	實驗材料.....30
3.2.2.	實驗設備.....34
3.2.3.	NdFeB薄膜濺鍍.....39
3.2.4.	NdFeB薄膜退火處理.....41
3.2.5.	透明磁性薄膜的製備與性質分析.....43
3.3.	薄膜性質量測分析設備.....51
3.3.1.	NdFeB磁鐵元素分析.....51
3.3.2.	膜厚量測.....53
3.3.3.	晶體結構分析.....54
3.3.4.	表面形貌分析.....55
3.3.5.	磁性量測.....56
3.3.6.	光學性質分析.....57
第四章	結果與討論.....58
4.1.	Ti/NdFeB/Ti薄膜性質分析.....58
4.1.1.	晶體結構分析.....58
4.1.2.	微結構分析.....61
4.1.3.	磁性分析.....66
4.2.	PMMA/Ti/NdFeB/Ti薄膜顆粒複合材料性質分析.....69
4.2.1.	微結構分析.....69
4.2.2.	光學分析.....71
4.2.3.	磁性分析.....72
第五章	結論與未來展望.....75
第六章	參考文獻.....76
 
圖目錄
圖1-1  向量磁光磁力計[4].....2
圖1-2  半透明磁性薄膜應用[11].....3
圖1-3  STO/MgO/ITO n/p/n 結構的 I-V 特性[17].....4
圖2-1  不同厚度的ZAO-Fe3O4膜在室溫下的磁滯曲線 [27].....10
圖2-2  不同Ti緩衝層厚度的磁滯曲線[55].....13
圖2-3  不同厚度NdFeB薄膜的矩形比(S=Mr/Ms)[59].....16
圖2-4  不同厚度NdFeB薄膜的矯頑力[59].....16
圖2-5  不同厚度的單層和多層膜面外磁滯曲線[61].....18
圖2-6  (a)燒結磁體和(b)最佳退火磁體的微觀結構示意圖[67].....19
圖2-7  鐵磁性物質之磁域結構[71].....24
圖2-8  磁滯曲線[71].....26
圖2-9  條紋幾何中兩個磁疇之間的Bloch wall中磁化旋轉的示意圖.....27
圖2-10  磁化強度(J)或磁通量密度(B)隨鐵磁材料中磁場強度(H)的變化而變化.....27
圖3-1  實驗流程圖.....29
圖3-2  燒結NdFeB磁鐵.....31
圖3-3  鈦靶.....31
圖3-4  高密度石墨板.....32
圖3-5  高壓除塵空氣罐.....33
圖3-6  耐高溫密封膠.....33
圖3-7  烘箱.....35
圖3-8  拋光機.....36
圖3-9  超音波清洗機.....36
圖3-10  真空濺鍍機.....37
圖3-11  真空高溫爐.....37
圖3-12  共軛焦雷射掃描顯微鏡.....38
圖3-13  熱壓機(由液壓機自行改裝).....38
圖3-14  耐熱膠帶蓋住一半Si基板.....40
圖3-15  沉積在(a)Si基板、(b)石墨板的Ti/ NdFB /Ti薄膜.....40
圖3-16  包埋法退火示意圖.....42
圖3-17  退火歷程.....42
圖3-18  退火後的Ti/ NdFB /Ti 薄膜在(a)Si基板、(b)石墨板上.....42
圖3-19  透明磁性薄膜的製作.....44
圖3-20  石墨板拋光.....45
圖3-21  液壓機改裝部分.....47
圖3-22  熱壓示意圖.....47
圖3-23  NdFeB薄膜附著在PMMA上.....48
圖3-24  熱壓摺疊示意圖.....48
圖3-25  PMMA/Ti/NdFeB/Ti薄膜 (a)重複熱壓摺疊 20 次(b).....50
圖3-26  感應耦合電漿質譜分析儀.....51
圖3-27  ICP-MS示意圖[73].....52
圖3-28  測針輪廓儀.....53
圖3-29  X光繞射分析儀.....54
圖3-30  高解析度場發射電子顯微鏡.....55
圖3-31  超導量子干涉磁量儀.....56
圖3-32  紫外可見分光光度計.....57
圖4-1  Ti / NdFeB(300~1200nm) / Ti薄膜退火前的晶體結構.....59
圖4-2  Ti / NdFeB(300~1200nm) / Ti薄膜退火後的晶體結構.....60
圖4-3  NdFeB(300nm)退火前的表面型態.....62
圖4-4  NdFeB(600nm)退火前的表面型態.....62
圖4-5  NdFeB(900nm)退火前的表面型態.....63
圖4-6  NdFeB(1200nm)退火前的表面型態.....63
圖4-7  NdFeB(300nm)退火後的表面型態.....64
圖4-8  NdFeB(600nm)退火後的表面型態.....64
圖4-9  NdFeB(900nm)退火後的表面型態.....65
圖4-10  NdFeB(1200nm)退火後的表面型態.....65
圖4-11  Ti / NdFeB(300nm) / Ti退火前的磁滯曲線.....68
圖4-12  Ti/NdFeB(300nm)/Ti退火後的磁滯曲線.....68
圖4-13  熱壓摺疊20次之顯微結構.....70
圖4-14  噴砂後熱壓摺疊之顯微結構.....70
圖4-15  PMMA/Ti/NdFeB(300nm)/Ti薄膜噴砂前後之透光率.....71
圖4-16  PMMA/Ti/NdFeB(300nm)/Ti薄膜在室溫下的磁滯曲線.....73
圖4-17  PMMA/Ti/ NdFeB/Ti薄膜的剩餘磁化強度曲線.....74
圖4-18  PMMA/Ti/ NdFeB/Ti薄膜的Henkel曲線.....74
 
表目錄
表2-1  Fe9Co5Al19F67和Fe13Co10Al22F55薄膜的磁化強度及透光率[21].....10
表2-2  緩衝層的厚度、退火溫度及磁性能[54].....12
表2-3  改變鐵濺鍍功率所得之釹鐵硼薄膜百分比[56].....14
表3-1  NdFeB磁鐵性能表.....31
表3-2  高密度石墨板材質證明.....32
表3-3  濺鍍參數.....40
References
1.Speliotis, D.E., G. Bate, J.K. Alstad, and J.R. Morrison, Hard Magnetic Films of Iron, Cobalt, and Nickel. Journal of Applied Physics, 1965. 36(3): p. 972-974.
2.Vergara, J., C. Favieres, and V. Madurga, MnBi hard magnetic films optimised through the correlation between resistivity, morphology and magnetic properties. Journal of Magnetism and Magnetic Materials, 2019. 491: p. 165525.
3.Dempsey, N.M., A. Walther, F. May, D. Givord, K. Khlopkov, and O. Gutfleisch, High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems. Applied Physics Letters, 2007. 90(9): p. 3.
4.Rogachev, A.E., P.M. Vetoshko, N.A. Gusev, M.A. Kozhaev, A.R. Prokopov, V.V. Popov, D.V. Dodonov, A.G. Shumilov, A.N. Shaposhnikov, V.N. Berzhansky, A.K. Zvezdin, and V.I. Belotelov, Vector magneto-optical sensor based on transparent magnetic films with cubic crystallographic symmetry. Applied Physics Letters, 2016. 109(16): p. 162403.
5.Dorveaux, E., Magneto-inertial navigation: principles and application to an indoor pedometer. 2011.
6.Haverinen, J. and A. Kemppainen, Global indoor self-localization based on the ambient magnetic field. Robotics and Autonomous Systems, 2009. 57(10): p. 1028-1035.
7.Huang, H., H. Chen, and S. Lin, MagTrack: Enabling Safe Driving Monitoring with Wearable Magnetics, in Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services. 2019, Association for Computing Machinery: Seoul, Republic of Korea. p. 326–339.
8.Khalil, I.S.M., A. Adel, D. Mahdy, M.M. Micheal, M. Mansour, N. Hamdi, and S. Misra, Magnetic localization and control of helical robots for clearing superficial blood clots. APL bioengineering, 2019. 3(2): p. 026104-026104.
9.Cheng, C., X. Huo, and M. Ghovanloo, Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy. Annu Int Conf IEEE Eng Med Biol Soc, 2009. 2009: p. 563-6.
10.George, M.S., S.H. Lisanby, and H.A. Sackeim, Transcranial magnetic stimulation: applications in neuropsychiatry. Arch Gen Psychiatry, 1999. 56(4): p. 300-
11.Chen, H., Semi‐Transparent Ultra High Sensitivity Magnetic Sensor, N.U.o. Singapore, Editor. 2017.
12.Jin, S., T.N. Tiefel, and R. Wolfe, Directionally-conductive, optically-transparent composites by magnetic alignment. IEEE Transactions on Magnetics, 1992. 28(5): p. 2211-2213.
13.Louzguine-Luzgin, D.V., S.V. Ketov, J. Orava, and S. Mizukami, Optically transparent magnetic and electrically conductive Fe–Cr–Zr ultra-thin films. physica status solidi (a), 2014. 211(5): p. 999-1004.
14.Ohno, H., A window on the future of spintronics. Nature Materials, 2010. 9(12): p. 952-954.
15.Lee, J., G.S. Nagarajan, Y. Shon, Y. Kwon, T.W. Kang, D.Y. Kim, H. Kim, H. Im, C.-S. Park, and E.K. Kim, Room temperature transparent conducting magnetic oxide (TCMO) properties in heavy ion doped oxide semiconductor. AIP Advances, 2017. 7(8): p. 085114.
16.Wurstbauer, U., C. Śliwa, D. Weiss, T. Dietl, and W. Wegscheider, Hysteretic magnetoresistance and thermal bistability in a magnetic two-dimensional hole system. Nature Physics, 2010. 6(12): p. 955-959.
17.Jambois, O., P. Carreras, A. Antony, J. Bertomeu, and C. Martínez-Boubeta, Resistance switching in transparent magnetic MgO films. Solid State Communications, 2011. 151(24): p. 1856-1859.
18.Dagani, R.O.N., New Material is Optically Transparent, Magnetic at Room Temperature. Chemical & Engineering News Archive, 1992. 70(29): p. 20-21.
19.Philip, J., A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, and J.S. Moodera, Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat Mater, 2006. 5(4): p. 298-304.
20.Sato, K. and H. Katayama-Yoshida, First principles materials design for semiconductor spintronics. Semiconductor Science and Technology, 2002. 17(4): p. 367-376.
21.Kobayashi, N., H. Masumoto, S. Takahashi, and S. Maekawa, Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance. Scientific Reports, 2016. 6: p. 7.
22.Suaste-Gomez, E., D. Hernandez-Rivera, N.A. Garcia-Morales, G. Palomino-Roldan, and H. Reyes-Cruz, Light Modulation in Magnetic Polymer Composite Nanofibrous Membranes by Applying a Variable Magnetic Field. Ieee Transactions on Magnetics, 2020. 56(3): p. 8.
23.Ogale, S.B., R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, and T. Venkatesan, High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta). Phys Rev Lett, 2003. 91(7): p. 077205.
24.Fukumura, T., H. Toyosaki, K. Ueno, M. Nakano, and M. Kawasaki, Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2. New Journal of Physics, 2008. 10(5): p. 055018.
25.Yamada, Y., T. Fukumura, K. Ueno, and M. Kawasaki, Control of ferromagnetism at room temperature in (Ti,Co)O2−δ via chemical doping of electron carriers. Applied Physics Letters, 2011. 99(24): p. 242502.
26.Janisch, R., P. Gopal, and N.A. Spaldin, Transition metal-doped TiO2 and ZnO-present status of the field. Journal of Physics Condensed Matter, 2005. 17(27): p. R657-R689.
27.Yazdi, M.B., M.L. Goyallon, T. Bitsch, A. Kastner, M. Schlott, and L. Alff, Transparent magnetic oxide thin films of Fe3O4 on glass. Thin Solid Films, 2011. 519(8): p. 2531-2533.
28.Ziolo, R.F., E.P. Giannelis, B.A. Weinstein, apos, M.P. Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, and D.R. Huffman, Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3: a new optically transparent magnetic material. Science, 1992. 257: p. 219+.
29.Ohkoshi, S., A. Namai, K. Imoto, M. Yoshikiyo, W. Tarora, K. Nakagawa, M. Komine, Y. Miyamoto, T. Nasu, S. Oka, and H. Tokoro, Nanometer-size hard magnetic ferrite exhibiting high optical-transparency and nonlinear optical-magnetoelectric effect. Sci Rep, 2015. 5: p. 14414.
30.Granovsky, A.B., M. Inoue, J.P. Clerc, and A.N. Yurasov, Magnetorefractive effect in nanocomposites: Dependence on the angle of incidence and on light polarization. Physics of the Solid State, 2004. 46(3): p. 498-501.
31.Lobov, I.D., M.M. Kirillova, L.N. Romashev, M.A. Milyaev, and V.V. Ustinov, Magnetorefractive effect and giant magnetoresistance in Fe(tx)/Cr superlattices. Physics of the Solid State, 2009. 51(12): p. 2480.
32.Akbashev, A.R., A.V. Telegin, A.R. Kaul, and Y.P. Sukhorukov, Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect. Journal of Magnetism and Magnetic Materials, 2015. 384: p. 75-78.
33.Gutfleisch, O., M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 2011. 23(7): p. 821-842.
34.Ziolo Ronald, F., P. Giannelis Emmanuel, A. Weinstein Bernard, P. O'Horo Michael, N. Ganguly Bishwanath, V. Mehrotra, W. Russell Michael, and R. Huffman Donald, Matrix-Mediated Synthesis of Nanocrystalline γ-Fe2O3: A New Optically Transparent Magnetic Material. Science, 1992. 257(5067): p. 219-223.
35.Syouji, A. and H. Tominaga, Magneto-optical effects of transparent magnetic diffraction gratings. Journal of Magnetism and Magnetic Materials, 2013. 347: p. 47-50.
36.Sato, K. and H. Katayama-Yoshida, Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors. Japanese Journal of Applied Physics, 2000. 39(Part 2, No. 6B): p. L555-L558.
37.Alaan, U.S., P. Shafer, A.T. N'Diaye, E. Arenholz, and Y. Suzuki, Gd-doped BaSnO3: A transparent conducting oxide with localized magnetic moments. Applied Physics Letters, 2016. 108(4): p. 042106.
38.Fu, Y.-d., S.-y. Wang, X.-s. Zhu, B. Fang, and F. Yan, Influence of modulated structure on magnetic properties of NdFeB/Co multilayer thin films. Journal of Central South University, 2015. 22: p. 3282-3286.
39.Grigoras, M., M. Urse, N. Lupu, F. Borza, and H. Chiriac, Effect of buffer and interlayer on the adhesion and magnetic properties of anisotropic Nd–Fe–B single and multilayer films. Applied Surface Science, 2015. 352: p. 66-72.
40.Jiang, Y., T. Fujita, M. Uehara, Y. Iga, T. Hashimoto, X. Hao, K. Higuchi, and K. Maenaka, Fabrication of NdFeB microstructures using a silicon molding technique for NdFeB/Ta multilayered films and NdFeB magnetic powder. Journal of Magnetism and Magnetic Materials, 2011. 323(21): p. 2696-2700.
41.Yang, Z.-n., C. Wang, Y. Zhang, and Y. Xie, Electroplating mechanism of nanocrystalline NdFeB film. Transactions of Nonferrous Metals Society of China, 2015. 25(3): p. 832-837.
42.Keavney, D.J., E.E. Fullerton, J.E. Pearson, and S.D. Bader, High-coercivity, c-axis oriented Nd2Fe14B films grown by molecular beam epitaxy. Journal of Applied Physics, 1997. 81(8): p. 4441-4443.
43.Nakano, M., M. Sahara, T. Yanai, F. Yamashita, and H. Fukunaga, Nd–Fe–B thick film magnets with Nb additive prepared by vacuum arc deposition method. Journal of Applied Physics, 2011. 109(7): p. 07A755.
44.Constantinescu, C., E. Patroi, M. Codescu, and M. Dinescu, Effect of nitrogen environment on NdFeB thin films grown by radio frequency plasma beam assisted pulsed laser deposition. Materials Science and Engineering: B, 2013. 178(4): p. 267-271.
45.Constantinescu, C., N. Scarisoreanu, A. Moldovan, M. Dinescu, L. Petrescu, and G. Epureanu, Thin films of NdFeB deposited by PLD technique. Applied Surface Science, 2007. 253(19): p. 8192-8196.
46.Hannemann, U., S. Melcher, V. Neu, S. Fahler, B. Holzapfel, and L. Schultz, Microstructure and coercivity mechanism of highly textured Nd-Fe-B films. IEEE Transactions on Magnetics, 2003. 39(5): p. 2726-2728.
47.Kapitanov, B., N. Kornilov, Y. Linetsky, and V. Tsvetkov, Sputtered permanent Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials, 1993. 127: p. 289-297.
48.Shindo, M., M. Ishizone, H. Kato, T. Miyazaki, and A. Sakuma, Exchange-spring behavior in sputter-deposited α-Fe/NdFeB multilayer magnets. Journal of Magnetism and Magnetic Materials - J MAGN MAGN MATER, 1996. 161.
49.Sun, H., T. Tomida, S. Hirosawa, and Y. Maehara, Magnetic properties and microstructure studies of NdFeB thin films. Journal of Magnetism and Magnetic Materials, 1996. 164(1): p. 18-26.
50.Cadieu, F., T.D. Cheung, L. Wickramasekara, and N. Kamprath, High iHc Perpendicular Anisotropy Nd-Fe-B Sputtered Films. Magnetics, IEEE Transactions on, 1986. 22: p. 752-754.
51.Lemke, H., T. Lang, T. Göddenhenrich, and C. Heiden, Micro patterning of thin NdFeB films. Journal of Magnetism and Magnetic Materials, 1995. 148(3): p. 426-432.
52.Tang, S.L., M.R.J. Gibbs, H.A. Davies, Z.W. Liu, S.C. Lane, and N.E. Mateen, An effective route for the fabrication of rare earth-iron-boron thin films having strong c-axis texture and excellent hard magnetic properties. Journal of Applied Physics, 2007. 101(1): p. 013910.
53.Liu, W., K. Zhang, and H. Zhang, Microstructure and Magnetic Properties of C-Axis-Oriented Mo/NdFeB/Mo Films. Applied Mechanics and Materials, 2012. 271-272: p. 343-346.
54.Jiang, H. and M. O’Shea, Coercitivity and its temperature dependence in NdFeB thin films with Cr, Mo, Ti, or Ta buffer layers. Journal of Applied Physics, 2000. 87: p. 6131-6133.
55.Chen, S.L., W. Liu, C.L. Chen, and Z.D. Zhang, Effects of buffer layer and substrate temperature on the surface morphology, the domain structure and magnetic properties of c-axis-oriented Nd2Fe14B films. Journal of Applied Physics, 2005. 98(3): p. 033907.
56.邱佩琪, 純元素靶濺鍍之釹-鐵-硼薄膜結構與磁性之研究, in 機械工程系碩士班. 2005, 國立雲林科技大學: 雲林縣. p. 188.
57.Su, H., J. Zhang, J. Du, W. Xia, A. Yan, and J. Liu. Influence of the preparation process and target composition on crystal structure and magnetic properties of NdFeB thin films. in 2015 IEEE International Magnetics Conference (INTERMAG). 2015.
58.Gunduz Akdogan, N., N.M. Dempsey, D. Givord, A. Manabe, T. Shoji, M. Yano, and A. Kato, Influence of Nd and Cu content on the microstructural and magnetic properties of NdFeB thick films. Journal of Applied Physics, 2014. 115(17): p. 17A722.
59.Piramanayagam, S.N., M. Matsumoto, and A. Morisako, Thickness dependence of magnetic properties of NdFeB thin films with perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 2000. 212(1): p. 12-16.
60.Zhang, M.G., L. Liu, F.H. Chen, and M.J. Li, Magnetic Properties of Multilayer and Alternative Multilayer NdFeB/Nd Thin Films. Rare Metal Materials and Engineering, 2017. 46(1): p. 270-273.
61.Grigoras, M., F. Borza, M. Urse, G. Stoian, G. Ababei, N. Lupu, and H. Chiriac, Layering influence on Nd agglomeration and hard magnetic properties of Mo/NdFeB/Mo thick films. Thin Solid Films, 2018. 665: p. 68-74.
62.Liu, W.-F., M.-G. Zhang, K.-W. Zhang, H.-J. Zhang, X.-H. Xu, and Y.-S. Chai, Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films. Chinese Physics B, 2016. 25: p. 117506.
63.Zhang, M., M. Li, L. Liu, W. Liu, and f. Chen, Magnetic properties of Ta/[NdFeB/Nd]n/Ta (n=1,5,8,10) multilayer films. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2015. 44: p. 1805-1808.
64.Guo, Z., J. Cao, D. Yan, F. Liu, C. Zhang, J. Guo, and Y. Fu, The influences of annealing on surface morphology and microstructure of NdFeB thin film. Journal of Physics: Conference Series, 2020. 1507: p. 102013.
65.Chen, S.L., W. Liu, C.L. Chen, and Z.D. Zhang, Effect of heat treatment on microstructure and magnetic properties of anisotropic Nd–Fe–B films with Mo or Ti buffer layer. Journal of Applied Physics, 2005. 98(11): p. 113905.
66.Li, W.F., T. Ohkubo, and K. Hono, Effect of post-sinter annealing on the coercivity and microstructure of Nd–Fe–B permanent magnets. Acta Materialia, 2009. 57(5): p. 1337-1346.
67.Sepehri-Amin, H., T. Ohkubo, T. Shima, and K. Hono, Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet. Acta Materialia, 2012. 60(3): p. 819-830.
68.Vial, F., F. Joly, E. Nevalainen, M. Sagawa, K. Hiraga, and K.T. Park, Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. Journal of Magnetism and Magnetic Materials, 2002. 242-245: p. 1329-1334.
69.Shen, J., F. Li, Z. Cao, D. Barat, and G. Tu, Light Scattering in Nanoparticle Doped Transparent Polyimide Substrates. ACS Applied Materials & Interfaces, 2017. 9(17): p. 14990-14997.
70.Pan, H., M. Xu, and X. Liu, Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength. IOP Conference Series: Materials Science and Engineering, 2017. 274: p. 012089.
71.Cullity, B.D., Introduction to magnetic materials. 1972.
72.Goev, G., V. Masheva, J. Geshev, and M. Mikhov, Irreversible Susceptibility of Initial Magnetization Curve. AIP Conference Proceedings, 2007. 899(1): p. 251-252.
73.Wilschefski, S.C. and M.R. Baxter, Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. The Clinical biochemist. Reviews, 2019. 40(3): p. 115-133.
74.Dempsey, N.M., Proceedings of the 18th International Workshop on High Performance Magnets and Their Applications: (formerly International Workshop on Rare-Earth Magnets and Their Applications); Including the Symposium Magnetic Micro-Actuators and Systems; Annecy, France, 2004. 2004.
75.Wang, X., K. Zhu, W. Li, J. Xu, Z. Ali, and Y. Hou, Nd2Fe14B hard magnetic powders: Chemical synthesis and mechanism of coercivity. Journal of Magnetism and Magnetic Materials, 2021. 518: p. 167384.
76.Jadhav, A.P., H.X. Ma, D.S. Kim, Y.K. Baek, C.J. Choi, and Y.S. Kang, Nd2Fe14B Synthesis: Effect of Excess Neodymium on Phase Purity and Magnetic Property. Bulletin of the Korean Chemical Society, 2014. 35(3): p. 886-890.
Terms of Use
Within Campus
On-campus access to my hard copy thesis/dissertation is open immediately
Release immediately
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Release immediately
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email