§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2307202413352100
DOI 10.6846/tku202400556
論文名稱(中文) 對數位置尺度分配的最佳化逐步設限可靠度抽樣計畫
論文名稱(英文) Optimal Progressively censored reliability sampling plans for the log-location-scale distribution
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 數學學系數學與數據科學碩士班
系所名稱(英文) Master's Program, Department of Mathematics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 112
學期 2
出版年 113
研究生(中文) 簡劭倫
研究生(英文) Shao-Lun Jane
學號 612190016
學位類別 碩士
語言別 英文
第二語言別
口試日期 2024-07-04
論文頁數 32頁
口試委員 指導教授 - 林千代( chien@mail.tku.edu.tw)
口試委員 - 吳碩傑(shuo@mail.tku.edu.tw)
口試委員 - 陳麗霞( lschen@nccu.edu.tw)
關鍵字(中) 允收抽樣
最優準則
變動鄰域搜索演算法
關鍵字(英) Acceptance sampling
Optimal criteria
Variable neighborhood search algorithm
第三語言關鍵字
學科別分類
中文摘要
本論文使用變動鄰域搜索(VNS)演算法,針對對數位置尺度分配,如韋伯(Weibull)分配和對數邏輯斯(log-logistic)分配,討論逐步設限策略下可靠度抽樣計畫所需之最小樣本數,並找尋此樣本數下最佳的逐步設限策略。與文獻存在的方法相比,我們的方法能顯著地減少所需之樣本數。在小樣本的情況下,VNS演算法搜尋的方法與完全搜索方法(CSM)所得到的最小樣本數結果相同或相近。因此,本文所建議的可靠度抽樣計畫樣本數尋找程序是有效且節省計算時間。當所求之最小樣本數找到後,我們繼續討論在四種目標函數(A-最優性、D-最優性、變異數測量值、成本)的最佳逐步設限策略。在韋伯分配下,使用我們找到的最佳逐步設限策略所求得之目標函數值均優於Ng et al.(2004)論文表格呈列的逐步設限策略所求得之目標函數值。最後,我們還討論加上成本上限的限制條件的最優化問題和敏感度分析。藉由所呈現的數據結果,也可以驗證我們的方法相較於過往的方法與CSM,在實際應用上更具實用性和效率。
英文摘要
This thesis introduces a variable neighborhood search algorithm-based approach to determine the minimum sample sizes required for progressively censored reliability sampling plans within the log-location-scale family of distributions, which include Weibull and log-logistic distributions. Our method significantly reduces sample sizes compared to previous approaches, demonstrating its feasibility, especially for small sample sizes, in contrast to complete search methods (CSM). Optimal censoring plans are identified using A- and D-optimality criteria, a variance-measure criterion, and a cost function-based criterion. The proposed  approach consistently outperforms the method proposed by Ng et al. (2004) for the Weibull distribution. Furthermore, we address an additional optimization problem with a cost constraint to illustrate the practicality and efficiency of our method, and we also conduct a sensitivity analysis.
第三語言摘要
論文目次
Contents 
1  Introduction                                                  	   1
2  Parameter Estimation for Log-Location-Scale Distribution               4
3  Optimal Progressive Censored Reliability Sampling Plan				   6
4  Numerical Studies                                                9
5  Optimal Progressive Censored Reliability Sampling Plans with Cost Minimization Based Criterion and Cost Constraint					  17
6  Conclusion                                                     25

List of Tables 
1	A comparison of the sample sizes calculated using our method with those tabulated in Table 10 of Ng et al. (2004) for pα = 0.00041 and pβ = 0.01840. 12 
2	Acomparison of the sample sizes and censoring plans derived from our method with those reported in Example 1 of Ng et al. (2004) for pα = 0.00284, 1 −α=0.95, pβ = 0.0311, β = 0.1, and q = 0.58 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
3	A comparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion (C1) . . . . . . . . . . 13 
4	A comparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion (C2) . . . . . . . . . . 14 
5	A comparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion (C3) . . . . . . . . . . 15
6	Optimal sampling plans for log-logistic distribution under three criteria . . . . 16 
7	A comparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion in (4) when (C1,C2,C3) = (5,5,5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
8	A comparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion in (4) when (C1,C2,C3) = (11,37,67) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
9	Optimal sampling plans for log-logistic distribution under under the criterion in (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 
10	Acomparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion (C3) with constraints in Eq. (5) when (C0,C1,C2) = (100,5,5) . . . . . . . . . . . . . . . . . . . . . . .23 
11	Acomparison between our optimal sampling plans and the sampling plans presented in Table 11 of Ng et al. (2004) under the criterion (C3) with constraints in Eq. (5) when (C0,C1,C2) = (250,11,37) . . . . . . . . . . . . . . . . . . . .24 
12	A sensitivity analysis under the criterion (C3) with constraints in Eq. (5) . . . 24
參考文獻
Balasooriya, U. and Balakrishnan, N. (2000). 
Reliability sampling plans for the lognormal distribution, based on 
progressively-censored samples. IEEE Transaction on Relia bility 49, 199–203. https://doi.org/10.1109/24.877338 
Balasooryia, U. and Saw, S. L. C. (1998). 
Reliability sampling plans for the two-parameter exponential distribution under progressive censoring. Journal of Applied Statistics 25, 707–714. https://www.tandfonline.com/doi/permissions/10.1080/02664769822927?scroll=top 
Balasooriya, U., Saw, S. L. C. and Gadag, V. (2000). 
Progressively censored reliability sampling plans for the Weibull distribution. Technometrics 42, 160–167. https://www. jstor.org/stable/1271448 
Bhattacharya, R., Pradhan, B. and Dewanji, A. (2016). 
On optimum life-testing plans under Type-II progressive censoring 
scheme using variable neighborhood search algorithm. Test 25, 309–330. https://doi.org/10.1007/s11749-015-0449-z 
Fernández, A. J.  (2005). 
Progressive censored variables sampling plans for two-parameter exponential distribution. Journal of Applied Statistics 32, 823–829. https://doi.org/10. 1080/02664760500080074 
Fernández, A. J.  and Pérez-González, C. J. (2012). 
Optimal acceptance sampling plans for log-location-scale lifetime models using average risks. Computational Statistics and Data Analysis 56, 719–731. https://doi.org/10.1016/j.csda.2011.09.020 
Hansen, P. and Mladenović, N. (1999). 
An introduction to variable neighborhood search. 
In: Voss, S., Martello, S., Osman, I. and Roucairol, C. (eds.) 
Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer Academic Publishers, Dordrecht, pp 433–458. https://link.springer.com/chapter/10.1007/978-1-4615-5775 3_30 
Lieberman, G. J. and Resnikoff, G. J. (1955). 
Sampling plans for inspection by variables. 
Journal of the American Statistical Association 50, 457–516. https://www.tandfonline.com /doi/abs/10.1080/01621459.1955.10501276 
Lin, C. T. and Balakrishnan, N. (2011). 
Asymptotic properties of maximum likelihood estimators based on 
progressive Type-II censoring. Metrika 74, 349–360. https://doi.org/ 10.1007/s00184-010-0306-8 
Ng, H. K. T., Chan, P. S., Balakrishnan, N. (2004). 
Optimal progressive censoring plans for the Weibull distribution. Techmonetrics 46, 470–481. https://doi.org/10.1198/0040 17004000000482 
Pérez-González, C. J. and Fernández, A. J. (2009). Accuracy of approximate progressively censored reliability sampling plans for exponential models. Statistical Papers 50, 161–170. https://doi.org/10.1007/s00362-007-0048-5 
Salem, M., Ismail, M. and Amin, Z. (2020). 
Progressively censored reliability sampling plans based on mean product lifetime. Sankhy
a−
a
-
: The Indian Journal of Statistics, Series B, 82, 1–33. https://www.jstor.org/stable/10.2307/48745640 
Schneider, H. (1989).  
Failure-censored variables-sampling plans for lognormal and Weibull distributions. Technometrics 31, 199–206. https://www.jstor.org/stable/1268817 
Tse, S.-K. and Yang, C. (2003). 
Reliability sampling plans for the Weibull distribution under type II progressive 
censoring with binomial removals. Journal of Applied Statistics 30, 709–718. https://doi.org/10.1080/0266476032000053781 
Wu, S. J. and Huang, S. R. (2012). 
Progressively first-failure censored reliability sampling plans with cost constraint. Computational Statistics and Data Analysis 56, 2018 2030. https://doi.org/10.1016/j.csda.2011.12.008 
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信