系統識別號 | U0002-2307202400131900 |
---|---|
DOI | 10.6846/tku202400553 |
論文名稱(中文) | 應用注意力機制與YOLOv8架構於胸腔電腦斷層影像之肺結節偵測 |
論文名稱(英文) | Application of Attention Mechanism and YOLOv8 Architecture for Pulmonary Nodule Detection in Thoracic Computed Tomography Images |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊工程學系碩士班 |
系所名稱(英文) | Department of Computer Science and Information Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 呂昶霆 |
研究生(英文) | Chang-Ting Lu |
學號 | 609410492 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-02 |
論文頁數 | 50頁 |
口試委員 |
指導教授
-
陳啓禎(cjchen@mail.tku.edu.tw)
口試委員 - 武士戎 口試委員 - 郭文嘉 |
關鍵字(中) |
肺癌 肺結節 電腦斷層 YOLO 注意力機制 |
關鍵字(英) |
Lung cancer Pulmonary nodules Computed Tomography YOLO Attention |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近年來,肺癌在全球出現的比例極高,人們開始對肺有關注,許多專家學者開始對肺癌進行相關的研究,肺癌的前身是肺結節,我們能藉由肺結節去探討演化成肺癌的可能性,肺結節主要分成四大類,實心結節、鈣化結節、毛玻璃病變結節與部分實心結節,判斷出位置與分辨出肺結節能夠使病患提早發現並治療。 本實驗使用YOLO技術進行分類,並使用進期最新的版本YOLOv8,在架構中進行修改,加入了兩種注意力機制,Convolutional Block Attention Module (CBAM)與Polarized Self-Attention (PSA),CBAM加入骨幹中,PSA加入頸部中,能讓YOLOv8技術透過注意力機制去加強CT影像特徵提取,將影像輸出後準確去判斷肺結節的種類與位置。 |
英文摘要 |
In recent years, the global incidence of lung cancer has risen sharply, prompting increased awareness about lung health. Experts and scholars have focused on researching lung cancer, which often originates from lung nodules. By studying lung nodules, we can explore the possibility of their evolution into lung cancer. Lung nodules are mainly classified into four categories: solid nodules, calcified nodules, ground glass opacity nodule, and part-solid nodules. Identifying their location and distinguishing the types can help patients detect and treat lung cancer early. This study utilizes YOLO technology for classification, specifically the latest version, YOLOv8, with modifications of adding two attention mechanisms: the Convolutional Block Attention Module (CBAM) in the Backbone and Polarized Self-Attention (PSA) in the Neck. These additions empower YOLOv8 technology to boost the feature extraction of CT images, allowing precise identification of the type and location of lung nodules from the image outputs. |
第三語言摘要 | |
論文目次 |
目錄 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3 論文組織與架構 4 第二章 相關研究介紹 5 2.1肺結節 5 2.2電腦斷層影像 9 2.3 YOLO 11 2.4 注意力機制 13 2.4.1 Convolutional Block Attention Module (CBAM) 15 2.4.2 Polarized Self-Attention (PSA) 17 2.5 方法相關探討 19 第三章 研究方法 20 3.1 YOLOv8架構圖 20 3.2 YOCP 架構圖 26 3.3 YOCP Backbone 28 3.4 YOCP Neck 33 3.5 YOCP流程圖 36 第四章 實驗結果與討論 37 4.1資料來源 37 4.2 評估指標 39 4.3實驗結果 41 4.4 模型呈現數據 44 第五章 結論與未來展望 47 5.1 結論 47 5.2未來展望 47 參考文獻 49 圖目錄 圖1 無肺結節(健康人) 7 圖2 四大種類肺結節,(a) SN、(b) CN、(c) GGN、和(d) PSN 8 圖3 C3模塊圖 21 圖4 C2f模塊圖 22 圖5 Bottleneck模塊圖 24 圖6 SPPF模塊圖 24 圖7 YOLOv8架構圖 25 圖8 YOCP架構圖 27 圖9 PSA架構圖(parallel) 30 圖10 PSA架構圖(sequential) 31 圖11 CBAM架構圖 33 圖12 CBAM架構圖(channel) 34 圖13 CBAM架構圖(spatial) 34 圖14 YOCP流程圖 36 圖 15 YOCP模型訓練圖 38 圖16 模型數據分析 42 圖17 YOCP模型各數據 42 圖18 YOCP模型F1數據 43 圖19 偵測肺結節(SN) 44 圖20 偵測肺結節(CN) 45 圖21 偵測肺結節(GGN) 45 圖22 偵測肺結節(PSN) 46 圖23 偵測肺結節(健康人,無肺結節) 46 表目錄 表 1 實驗硬體版本 38 表 2 實驗軟體版本 38 表 3 混淆矩陣 39 表 4 模型數據比較 41 |
參考文獻 |
參考文獻 [1]. 康健. 十大癌症榜首換人!肺癌發生人數奪冠,如何早期發現?(2023). 2023 [cited 2024 June 02]; Available from: https://www.commonhealth.com.tw/article/88402. [2]. 健康醫療網. 世界肺癌大會免疫治療研究曝光:存活率有望由2%進步到二位數(2023).2023[cited2024June02];Availablefrom:https://www.healthnews.com.tw/article/59419/. [3]. Binson, V. and M. Subramoniam. Advances in early lung cancer detection: A systematic review. in 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). 2018. IEEE. [4]. Ost, D.E. and M.K. Gould, Decision making in patients with pulmonary nodules. American journal of respiratory and critical care medicine, 2012. 185(4): p. 363-372. [5]. Jiang, P., et al., A Review of Yolo algorithm developments. Procedia computer science, 2022. 199: p. 1066-1073. [6]. Monkam, P., et al., Detection and classification of pulmonary nodules using convolutional neural networks: a survey. Ieee Access, 2019. 7: p. 78075-78091. [7]. Knudsen, E.I., Fundamental components of attention. Annu. Rev. Neurosci., 2007. 30: p. 57-78. [8]. Woo, S., et al. Cbam: Convolutional block attention module. in Proceedings of the European conference on computer vision (ECCV). 2018. [9]. Liu, H., et al., Polarized self-attention: Towards high-quality pixel-wise regression. arXiv preprint arXiv:2107.00782, 2021. [10]. Reeves, A.P., et al., On measuring the change in size of pulmonary nodules. IEEE transactions on medical imaging, 2006. 25(4): p. 435-450. [11]. Mori, M., et al., Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Modern Pathology, 2001. 14(2): p. 72-84. [12]. Way, T.W., et al., Computer‐aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Medical physics, 2009. 36(7): p. 3086-3098. [13]. Zhao, J., et al., Covid-ct-dataset: a ct scan dataset about covid-19. 2020. [14]. Tuder, R.M. and I. Petrache, Pathogenesis of chronic obstructive pulmonary disease. The Journal of clinical investigation, 2012. 122(8): p. 2749-2755. [15]. Saltzman, C.L., et al., Coronal plane rotation of the first metatarsal. Foot & ankle international, 1996. 17(3): p. 157-161. [16]. Redmon, J., et al. You only look once: Unified, real-time object detection. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. [17]. Mijwil, M.M., et al., The Distinction between R-CNN and Fast RCNN in Image Analysis: A Performance Comparison. Asian Journal of Applied Sciences, 2022. 10(5). [18]. Kesana, A., et al. Brain Tumor Detection Using YOLOv5 and Faster R-CNN. in 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN). 2023. IEEE. [19]. Hu, M., et al. A2-FPN: Attention aggregation based feature pyramid network for instance segmentation. in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021. [20]. 张宸嘉, 朱磊, and 俞璐, 卷积神经网络中的注意力机制综述. Journal of Computer Engineering & Applications, 2021. 57(20). [21]. Bahdanau, D., K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. [22]. Luong, M.-T., H. Pham, and C.D. Manning, Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015. [23]. Vaswani, A., et al., Attention is all you need. Advances in neural information processing systems, 2017. 30. [24]. Bello, I., et al. Attention augmented convolutional networks. in Proceedings of the IEEE/CVF international conference on computer vision. 2019. [25]. Mei, J., et al., SANet: A slice-aware network for pulmonary nodule detection. IEEE transactions on pattern analysis and machine intelligence, 2021. 44(8): p. 4374-4387. [26]. Kirillov, A., et al. Segment anything. in Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信