§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2302202217143400
DOI 10.6846/TKU.2022.00629
論文名稱(中文) 焦慮和憂鬱對美國老年人薪資的影響-半母數的分析
論文名稱(英文) The impact of anxiety and depression on wage among the elderly in the U.S.—a semiparametric analysis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 產業經濟學系碩士班
系所名稱(英文) Department of Industrial Economics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 110
學期 1
出版年 111
研究生(中文) 徐郁茜
研究生(英文) YU-CHIEN HSU
學號 609540025
學位類別 碩士
語言別 英文
第二語言別
口試日期 2022-01-11
論文頁數 59頁
口試委員 指導教授 - 胡登淵(tyhu@mail.tku.edu.tw)
口試委員 - 陳世能(snchen@mail.shu.edu.tw)
口試委員 - 陳鎮洲(jennjou@nccu.edu.tw)
關鍵字(中) 焦慮
憂鬱
就業
薪資
老年人
半母數分析
關鍵字(英) anxiety
depression
employment
wage
elderly
semiparametric analysis
第三語言關鍵字
學科別分類
中文摘要
本研究目的是在使用半母數分析焦慮和憂鬱的嚴重程度與老年人的時薪之間的關係。我們假說是適度的焦慮可能會增加薪水,其焦慮程度和薪水關係呈倒 U 型,一定程度的焦慮會迫使人們在工作中更加積極並提高工資,但是過度焦慮則可能會影響工作績效並降低工資。然而,憂鬱對工資的影響可能呈負相關,當一個人越憂鬱時,他們的工作表現就越差,得到的薪水就越少。本研究使用部分線性模型來驗證焦慮和憂鬱對不同性別工人時薪的影響。數據主要來自美國 2006-2016 年美國 the Health and Retirement Study(HRS)。我們使用 Heckman 兩階段模型來解決潛在的選擇偏差問題。第一階段模型使用 Probit 模型來估計個人是否參與工作。這裡的因變量是一個二元虛擬變量,自變量是影響個人決定工作與否的外生變量。根據 Probit模型,我們計算出樣本的 inverse Mill's ratio 來修正樣本選擇偏差。第二階段模型是半母數模型,以工資為主要預測因素,以疾病為結果變量。為了解決選擇偏差的問題,在方程中加入 inverse Mill's ratio。半母數模型中疾病對 IV 廻歸的誤差項來處理潛在的內生性,且其殘差可去除 IV 無法解釋的疾病變異以及其他解釋變量所造成的內生影響。2010 年的分析結果顯示,在伴有一定程度的焦慮和憂鬱時,男性其工資會先上升後下降,而嚴重的焦慮和憂鬱症狀會再次增加男性的工資。由於焦慮和憂鬱越加嚴重,女性的工資隨之下降,顯示出女性的工資有疾病懲罰的跡象。根據這項研究發現,女性通常比男性較容易感受更多的焦慮和憂鬱,另外,我們提出懷疑,有可能出現嚴重心理疾病的工人多報工資的情況而影響結果。
英文摘要
The purpose of this study was to analyze the relationship between anxiety and depression and hourly earnings in older adults using semiparametric analysis. Our hypothesis is that a certain criterion of anxiety may increase wages. The relationship between anxiety level and wages is inverted U-shaped. A certain degree of anxiety will force people to be more active at work and increase wages, but excessive anxiety may affect job performance and reduce salary. However, the effect of depression on wages can be negatively correlated, with the more depressed a person is, the worse their job performance and the less pay they get. This study uses a partial linear model to examine the effects of anxiety and depression on the hourly wages of workers by gender. The data mainly come from the Health and Retirement Study (HRS) in the United States from 2006 to 2016. We use a Heckman two-stage model to address potential selection bias. The first stage model uses the Probit model to estimate whether an individual is involved in the work. The dependent variable here is a binary dummy variable, and the independent variable is an exogenous variable that affects an individual's decision to work or not. According to the Probit model, we calculate the inverse Mill's ratio of the sample to correct for sample selection bias. The second-stage model is a semiparametric model with wages as the main predictor and disease as the outcome variable. To address the problem of selection bias, we add the inverse Mill's ratio to the equation. The error term of the regression of disease on IV in the semiparametric model is used to deal with potential endogeneity, and its residual can remove the endogenous effect of disease variation that cannot be explained by IV and other explanatory variables. The results of the 2010 analysis showed that when accompanied by a certain degree of anxiety and depression, males’ wages first rose and then fell, and severe disease increased males’ wages again. Females’ wages fell as anxiety and depression increased, showing signs that females’ wages were punished by disease. According to the findings of this study, females are generally more likely to experience higher levels of anxiety and depression than males, and we raise suspicions that over reporting of wages by workers with severe mental illness may affect the results.
第三語言摘要
論文目次
TABLE OF CONTENTS:
I. INTRODUCTION.................1
II. LITERATURE REVIEW.................2
III. DATA .................6
3.1 DEMOGRAPHIC CHARACTERISTICS .................6
3.2 OUTCOME VARIABLE.................7
3.2.1 EMPLOYMENT.................7
3.2.2 DEPRESSION AND ANXIETY SYMPTOMS.................8
3.3 PRIMARY PREDICTOR VARIABLE.................12
3.4 INSTRUMENTAL VARIABLE.................20
IV. VARIABLE SPECIFICATION AND METHODOLOGY ....................21
V. RESULTS.................24
VI. CONCLUSION.................45
VII. REFERENCE .................48
VIII. APPENDIX .................51

LIST OF TABLES:
Table 1 Weighted summary statistics for disease of male potential
workers in 2010 ..........................................................................13
Table 2 Weighted summary statistics for disease of female potential
workers in 2010...........................................................................14
Table 3 Weighted summary statistics for anxiety of workers in 2010
(by gender) ..................................................................................18
Table 4 Weighted summary statistics for depression of workers in 2010
(by gender) ..................................................................................19
Table 5 Exogenous disease and log wage: partially linear model in 2010
(By gender and disease) .............................................................26
Table 6 Endogenous disease and log wage–partially linear model: the
augmented regression approach in 2010 (By gender and
disease).........................................................................................32
Table 7 Endogenous disease and log wage–partially linear model:
Robustness check (By gender and disease) ..............................39
Table 8 Endogenous disease and log wage–partially linear model:
Robustness check without outlier (By gender and disease)....42

LIST OF FIGURES:
Figure 1 The percentage of elderly males’ depression in the U.S.............9
Figure 2 The percentage of elderly females’ depression in the U.S..........9
Figure 3 The percentage of elderly males’ anxiety in the U.S. ...............11
Figure 4 The percentage of elderly females’ anxiety in the U.S. ............11
Figure 5 Densities of wage for elderly workers in the U.S. in 2010 (by
gender)..........................................................................................16
Figure 6 Density of wage: suffering anxiety versus not suffering anxiety
in the U.S. in 2010: (a)male (b)female .......................................16
Figure 7 Density of wage: suffering depression versus not suffering
depression in the U.S. in 2010: (a)male (b)female ....................16
Figure 8 Semiparametric estimates of the effects of anxiety on log real
wage: Exogenous–males..............................................................28
Figure 9 Semiparametric estimates of the effects of anxiety on log real
wage: Exogenous–females...........................................................28
Figure 10 Semiparametric estimates of the effects of depression on log
real wage: Exogenous–males......................................................29
Figure 11 Semiparametric estimates of the effects of depression on log
real wage: Exogenous–females...................................................29
Figure 12 Semiparametric estimates of the effects of anxiety on log real
wage: Endogenous–males...........................................................35
Figure 13 Semiparametric estimates of the effects of anxiety on log real
wage: Endogenous–females........................................................35
Figure 14 Semiparametric estimates of the effects of depression on log
real wage: Endogenous–males....................................................36
Figure 15 Semiparametric estimates of the effects of depression on log
wage: Endogenous–females........................................................36
Figure 16 Semiparametric estimates of the effects of anxiety on log wage:
Robustness check–males.............................................................40
Figure 17 Semiparametric estimates of the effects of anxiety on log wage:
Robustness check–females..........................................................40
Figure 18 Semiparametric estimates of the effects of depression on log
wage: Robustness check–males..................................................41
Figure 19 Semiparametric estimates of the effects of depression on log
wage: Robustness check–females...............................................41
Figure 20 Semiparametric estimates of the effects of anxiety on log wage:
Robustness check without outlier–males ..................................43
Figure 21 Semiparametric estimates of the effects of anxiety on log wage:
Robustness check without outlier–females ...............................43
Figure 22 Semiparametric estimates of the effects of depression on log
wage: Robustness check without outlier–males........................44
Figure 23 Semiparametric estimates of the effects of depression on log
wage: Robustness check without outlier–females ....................44
參考文獻
Alexandre, P. K., & French, M. T. (2001). Labor supply of poor residents in metropolitan
Miami, Florida: The role of depression and the co-morbid effects of substance
use. Journal of Mental Health Policy and Economics, 4(4), 161-174.
Cigolle, C. T., Langa, K. M., Kabeto, M. U., Tian, Z., & Blaum, C. S. (2007). Geriatric
conditions and disability: the Health and Retirement Study. Annals of internal
medicine, 147(3), 156-164.
Dijkstra-Kersten, S. M., Biesheuvel-Leliefeld, K. E., van der Wouden, J. C., Penninx, B.
W., & van Marwijk, H. W. (2015). Associations of financial strain and income
with depressive and anxiety disorders. J Epidemiol Community Health, 69(7),
660-665.
Drentea, P. (2000). Age, debt and anxiety. Journal of health and Social Behavior, 437-
450.
Economou, M., Souliotis, K., Peppou, L. E., Agapidaki, I., Tzavara, C., & Stefanis, C. N.
(2018). Major depression in Cyprus amid financial crisis: prevalence and
correlates. International Journal of Culture and Mental Health, 11(3), 255-267.
Glass Jr, J. C., & Kilpatrick, B. B. (1998). Gender comparisons of baby boomers and
financial preparation for retirement. Educational Gerontology: An International
Quarterly, 24(8), 719-745.
Gould, C. E., Rideaux, T., Spira, A. P., & Beaudreau, S. A. (2015). Depression and anxiety
symptoms in male veterans and non-veterans: The Health and Retirement
study. International Journal of Geriatric Psychiatry, 30(6), 623-630.
Gregory, C. A., & Ruhm, C. J. (2011). 11 Where Does the Wage Penalty Bite? :
University of Chicago Press.
Halima, M. A. B., & Rococo, E. (2014). Wage differences according to health status in
France. Social Science & Medicine, 120, 260-268.
Headey, B., Kelley, J., & Wearing, A. (1993). Dimensions of mental health: Life
satisfaction, positive affect, anxiety and depression. Social indicators research,
29(1), 63-82.
Heisler, M., Cole, I., Weir, D., Kerr, E. A., & Hayward, R. A. (2007). Does physician
communication influence older patients' diabetes self-management and
glycemic control? Results from the Health and Retirement Study (HRS). The
Journals of Gerontology Series A: Biological Sciences and Medical Sciences,
62(12), 1435-1442.
Koivumaa-Honkanen, H., Kaprio, J., Honkanen, R., Viinamäki, H., & Koskenvuo, M.
(2004). Life satisfaction and depression in a 15-year follow-up of healthy
adults. Social psychiatry and psychiatric epidemiology, 39(12), 994-999.

49

Mancini, C., Van Ameringen, M., & MacMillan, H. (1995). Relationship of childhood
sexual and physical abuse to anxiety disorders. Journal of Nervous and Mental
Disease.
Marjanovic, Z., Greenglass, E. R., Fiksenbaum, L., & Bell, C. M. (2013). Psychometric
evaluation of the Financial Threat Scale (FTS) in the context of the great
recession. Journal of Economic Psychology, 36, 1-10.
Mitchell, J. M. (1990). The effect of chronic disease on work behavior over the life
cycle. Southern Economic Journal, 928-942.
Mitchell, J. M., & Butler, J. (1986). Arthritis and the earnings of men: An analysis
incorporating selection bias. Journal of Health Economics, 5(1), 81-98.
Munnell, A. H., Orlova, N., & Webb, A. (2012). How important is asset allocation to
financial security in retirement? Center for Retirement Research at Boston
College Working Paper(2012-13).
Pelkowski, J. M., & Berger, M. C. (2004). The impact of health on employment, wages,
and hours worked over the life cycle. The Quarterly Review of Economics and
Finance, 44(1), 102-121.
Rockville, M. (1999). Mental health: A report of the Surgeon General. US Department
of Health and Human Services.
Roll, S. P., Taylor, S. H., & Grinstein-Weiss, M. (2016). Financial Anxiety in Low-and
Moderate-Income Households: Findings from the Household Financial Survey.
Shih, H.-H., & Lin, M.-J. (2017). Does anxiety affect adolescent academic performance?
The inverted-U hypothesis revisited. Journal of Labor Research, 38(1), 45-81.
Shimokawa, S. (2008). The labour market impact of body weight in China: a
semiparametric analysis. Applied Economics, 40(8), 949-968.
Short, P. F., Vasey, J. J., & Moran, J. R. (2008). Long-term effects of cancer survivorship
on the employment of older workers. Health Services Research, 43(1p1), 193-
210.
Tucker-Seeley, R. D., Li, Y., Subramanian, S., & Sorensen, G. (2009). Financial hardship
and mortality among older adults using the 1996–2004 Health and Retirement
Study. Annals of epidemiology, 19(12), 850-857.
Tunceli, K., Bradley, C. J., Nerenz, D., Williams, L. K., Pladevall, M., & Lafata, J. E.
(2005). The impact of diabetes on employment and work productivity.
Diabetes care, 28(11), 2662-2667.
Watkins, D. C., Assari, S., & Johnson-Lawrence, V. (2015). Race and ethnic group
differences in comorbid major depressive disorder, generalized anxiety
disorder, and chronic medical conditions. Journal of racial and ethnic health
disparities, 2(3), 385-394.
Characteristics of Minimum Wage Workers-United States Department of Labor (https://www.bls.gov/cps/minwage2006.htm#)
Consumer Price Index-United States Department of Labor
(https://www.bls.gov/cpi/data.htm)
Unemployment Rate (https://www.bls.gov/cps/cpsdbtabs.htm)
Definition of disability (https://www.gpadacenter.org/definition-disability)
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信