系統識別號 | U0002-2208202413550300 |
---|---|
DOI | 10.6846/tku202400702 |
論文名稱(中文) | 應用傳遞熵探索濁水溪流域地表水與地下水間之動態因果關係 |
論文名稱(英文) | Exploring Dynamic Causal Relationships between Surface Water and Groundwater in the Zhuoshui River Basin Using Transfer Entropy |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 水資源及環境工程學系碩士班 |
系所名稱(英文) | Department of Water Resources and Environmental Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 陳廣益 |
研究生(英文) | Guang-Yi Chen |
學號 | 612480292 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-07-23 |
論文頁數 | 88頁 |
口試委員 |
指導教授
-
張麗秋(changlc@mail.tku.edu.tw)
口試委員 - 張斐章(changfj@ntu.edu.tw) 口試委員 - 陳瑞昇 |
關鍵字(中) |
地表水 地下水 補注 流出 傳遞熵 |
關鍵字(英) |
Surface Water Groundwater Recharge Discharge Transfer Entropy |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
全球暖化與氣候變遷對水資源的衝擊日益嚴重。臺灣地形陡峭,河川短小,導致地表水資源難以有效蓄存,且豐水期與枯水期降雨量差異顯著,進一步影響地下水資源的補注。長期過度開發地下水導致地層下陷、海水倒灌等問題。因此,為了解地表水與乾旱情況對地下水資源之補注與洩降關係,以瞭解地表水對地下水之影響有助於建置地下水推估模式地表水地下水聯合運用管理。 本研究針對濁水溪流域進行分析,將其分為中上游山區、中下游扇頂、扇央與扇尾的沖積扇區域。透過徐昇氏多邊形法整合山區與雨量,並消除觀測井之高程差異,探討地表水對地下水的影響,了解不同分區的地表水與地下水之間的因果關係。根據地質條件,通過觀察地下水位變化,去除人為因素與觀測井延時的干擾,以利於傳遞熵計算。本研究針對豐水期與枯水期進行劃分,分析不同水文時期降雨對地下水位變化的影響趨勢,以提供地表水地下水聯合管理之參考策略。 研究結果顯示,降雨主要影響水位長期變化,傳遞熵能捕捉地下水位隨雨量變化的細微動態,量化各時期不同雨量對地下水位的細微影響。統計各觀測井在不同水位區間內的傳遞熵正值比例,結果顯示特定區間內地下水位受雨量影響顯著。水力傳導係數良好的地質區間內,傳遞熵正值比例較高,顯示雨量變化對地下水位影響顯著。加入流量因子後,聯合傳遞熵分析結果顯示流量顯著影響地下水位變化,特別在乾旱情境下,無降雨時,流量仍能對地下水位產生影響。 綜合分析顯示,豐水期雨量增加對地下水位補注效果顯著,尤其在水力傳導係數良好的地質區間,雨量影響更明顯。 |
英文摘要 |
The impact of global warming and climate change on water resources is becoming increasingly severe. Taiwan’s steep terrain and short rivers lead to ineffective storage of surface water resources. The significant differences in rainfall between wet and dry periods further affect the recharge of groundwater resources. Long-term over-extraction of groundwater has resulted in issues such as land subsidence and seawater intrusion. Therefore, understanding the relationship between surface water and groundwater recharge and discharge during drought conditions, and how surface water influences groundwater, is crucial for establishing a joint management model for surface and groundwater resources. This study focuses on the Zhuoshui River basin, analyzing it by dividing it into the upstream mountainous area, the midstream and downstream alluvial fan regions, including the fan top, fan center, and fan tail. Using the Thiessen polygon method to integrate mountainous areas with rainfall data, and eliminating elevation differences among observation wells, this research explores the impact of surface water on groundwater and the causal relationship between them in different sub-regions. Based on geological conditions, groundwater level changes were observed while removing artificial factors and the interference of time delays in observation wells to facilitate transfer entropy calculations. This study categorizes the data into wet and dry periods to analyze the trends of rainfall’s impact on groundwater level changes during different hydrological periods, providing reference strategies for joint surface and groundwater management. The results indicate that rainfall primarily influences long-term water level changes, and transfer entropy captures the subtle dynamics of groundwater level changes in response to rainfall, quantifying the impact of rainfall on groundwater levels. By statistically analyzing the proportion of positive transfer entropy values across different water level ranges for each observation well, it was found that groundwater levels in specific ranges are significantly affected by rainfall. In geological regions with good hydraulic conductivity, the proportion of positive transfer entropy values is higher, indicating a more significant impact of rainfall on groundwater levels. When incorporating the flow factor, joint transfer entropy analysis results show that flow significantly influences groundwater level changes. This is particularly evident in drought scenarios, where even in the absence of rainfall, flow can still affect groundwater levels. Comprehensive analysis shows that increased rainfall during wet periods has a significant recharge effect on groundwater levels, especially in geological regions with good hydraulic conductivity, where the impact of rainfall is more pronounced. |
第三語言摘要 | |
論文目次 |
目錄 謝誌 II 目錄 IX 圖目錄 XII 表目錄 XV 第一章 前言 1 1.1 研究背景與重要性 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 降雨、地表水與地下水變動關係之相關研究 3 2.2 傳遞熵之相關研究 6 第三章 理論概述 8 3.1 傳遞熵介紹 8 3.1.1 基礎資訊理論與熵計算 8 3.1.2 聯合熵 9 3.1.3 互資訊 10 3.1.4 條件熵 11 3.1.5 條件互資訊 11 3.1.6 傳遞熵 12 3.1.7 聯合傳遞熵 13 3.2 機率分布 14 3.2.1 伽瑪分佈 14 3.2.2 常態分布 15 3.3 相關係數 16 第四章 研究案例 17 4.1 研究區域 17 4.1.1 地理環境概況 17 4.1.2 水文地質概況 18 4.2 資料蒐集 21 4.2.1 資料篩選 21 4.3 資料前處理 23 第五章 結果與討論 29 5.1 地質條件與延時 29 5.2 雨量因子 33 5.2.1 豐枯水期分析 34 5.3 流量因子 45 第六章 結論與建議 49 6.1 結論 49 6.2 建議 50 參考文獻 52 附錄A 觀測井資料表 57 附錄B 傳遞熵、雨量與地下水位分布圖 68 附錄C 水文地質剖面 71 附錄D 傳遞熵之動態歷程圖 74 圖目錄 圖4-1濁水溪流域 18 圖4-2濁水溪水文地質屏狀圖 20 圖4- 3第一含水層地下水觀測井 22 圖4- 4濁水溪流域雨量站分布圖 22 圖4- 5濁水溪流域流量站分布圖 23 圖4-6雨量站徐昇多邊形面積比例 24 圖5-1水文地質剖面(西港-田中) 32 圖5-2水文地質剖面(石榴-崁腳) 32 圖5-3花壇傳遞熵之動態歷程圖 36 圖5-4文昌傳遞熵之動態歷程圖 37 圖5-5洛津豐水期傳遞熵之動態歷程圖 37 圖5-6花壇枯水期傳遞熵之動態歷程圖 38 圖5-7傳遞熵、雨量與地下水位分布圖 43 圖5-8水文地質剖面(花壇-東榮) 44 圖5-9社寮聯合傳遞熵之動態歷程圖 47 附圖B-1傳遞熵、雨量與地下水位分布圖 70 附圖C-1水文地質剖面(全興-東石) 71 附圖C-2水文地質剖面(莿桐-三和) 71 附圖C-3水文地質剖面(宜梧-東和) 72 附圖C-4水文地質剖面(箔子-土庫) 73 附圖C-5水文地質剖面(漢寶-田中) 73 附圖D-1花壇(2005)傳遞熵之動態歷程圖 74 附圖D-2花壇(2006)傳遞熵之動態歷程圖 74 附圖D-3花壇(2008)傳遞熵之動態歷程圖 74 附圖D-4花壇(2009)傳遞熵之動態歷程圖 75 附圖D-5花壇(2010)傳遞熵之動態歷程圖 75 附圖D-6花壇(2011)傳遞熵之動態歷程圖 75 附圖D-7花壇(2012)傳遞熵之動態歷程圖 76 附圖D-8花壇(2013)傳遞熵之動態歷程圖 76 附圖D-9花壇(2014)傳遞熵之動態歷程圖 76 附圖D-10花壇(2015)傳遞熵之動態歷程圖 77 附圖D-11花壇(2016)傳遞熵之動態歷程圖 77 附圖D-12花壇(2017)傳遞熵之動態歷程圖 77 附圖D-13花壇(2018)傳遞熵之動態歷程圖 78 附圖D-14花壇(2019)傳遞熵之動態歷程圖 78 附圖D-15花壇(2020)傳遞熵之動態歷程圖 78 附圖D-16文昌(2005)傳遞熵之動態歷程圖 79 附圖D-17文昌(2006)傳遞熵之動態歷程圖 79 附圖D-18文昌(2008)傳遞熵之動態歷程圖 79 附圖D-19文昌(2009)傳遞熵之動態歷程圖 80 附圖D-20文昌(2010)傳遞熵之動態歷程圖 80 附圖D-21文昌(2011)傳遞熵之動態歷程圖 80 附圖D-22文昌(2012)傳遞熵之動態歷程圖 81 附圖D-23文昌(2013)傳遞熵之動態歷程圖 81 附圖D-24文昌(2014)傳遞熵之動態歷程圖 81 附圖D-25文昌(2015)傳遞熵之動態歷程圖 82 附圖D-26文昌(2016)傳遞熵之動態歷程圖 82 附圖D-27文昌(2017)傳遞熵之動態歷程圖 82 附圖D-28文昌(2018)傳遞熵之動態歷程圖 83 附圖D-29文昌(2019)傳遞熵之動態歷程圖 83 附圖D-30文昌(2020)傳遞熵之動態歷程圖 83 附圖D-31社寮(2005)聯合傳遞熵之動態歷程圖 84 附圖D-32社寮(2006)聯合傳遞熵之動態歷程圖 84 附圖D-33社寮(2007)聯合傳遞熵之動態歷程圖 84 附圖D-34社寮(2008)聯合傳遞熵之動態歷程圖 85 附圖D-35社寮(2010)聯合傳遞熵之動態歷程圖 85 附圖D-36社寮(2011)聯合傳遞熵之動態歷程圖 85 附圖D-37社寮(2012)聯合傳遞熵之動態歷程圖 86 附圖D-38社寮(2013)聯合傳遞熵之動態歷程圖 86 附圖D-39社寮(2014)聯合傳遞熵之動態歷程圖 86 附圖D-40社寮(2015)聯合傳遞熵之動態歷程圖 87 附圖D-41社寮(2016)聯合傳遞熵之動態歷程圖 87 附圖D-42社寮(2017)聯合傳遞熵之動態歷程圖 87 附圖D-43社寮(2018)聯合傳遞熵之動態歷程圖 88 附圖D-44社寮(2019)聯合傳遞熵之動態歷程圖 88 附圖D-45社寮(2020)聯合傳遞熵之動態歷程圖 88 表目錄 表4-1各雨量站資料與徐昇氏多邊形權重因子 24 表4-2雨量超越機率四級距統計資料 27 表4-3各月份雨量資超越機率月筆數分布 27 表5-1各站延時天數 31 表5- 2各觀測井正值比例站比 33 表5-3各觀測井豐枯水期比例 36 表5- 4各觀測井較佳區間百分比 41 表5- 5各觀測井正值百分比 46 表5-6抽水用電量與地下水相關性 48 附表A-1雨量觀測井資料表 57 附表A-2流量觀測井資料表 59 附表A-3地下水觀測井資料表 59 |
參考文獻 |
1. 張斐章、張麗秋(2015),「類神經網路導論-原理與應用第二版」,滄海書局。 2. Assaf, A., Bilgin, M. H., & Demir, E. (2022). Using transfer entropy to measure information flows between cryptocurrencies. Physica A: Statistical Mechanics and Its Applications, 586, 126484. 3. Anibas, C., Buis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2011). A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. Journal of hydrology, 397(1,2), 93,104. 4. Bennett, A., Nijssen, B., Ou, G., Clark, M., & Nearing, G. (2019). Quantifying process connectivity with transfer entropy in hydrologic models. Water Resources Research- 55(6)- 4613-4629. 5. Bai- T.- Tsai- W. P.- Chiang- Y. M.- Chang- F. J.- Chang- W. Y.- Chang- L. C.- & Chang- K. C. (2019). Modeling and investigating the mechanisms of groundwater level variation in the Jhuoshui River Basin of Central Taiwan. Water- 11(8)- 1554. 6. Bauer- M.- Cox- J. W., Caveness, M. H., Downs, J. J., & Thornhill, N. F. (2006). Finding the direction of disturbance propagation in a chemical process using transfer entropy. IEEE transactions on control systems technology, 15(1), 12,21. 7. Chang, F. J., Huang, C. W., Cheng, S. T., & Chang, L. C. (2017). Conservation of groundwater from over,exploitation—Scientific analyses for groundwater resources management. Science of the Total Environment, 598, 828,838. 8. Chang, F. J., Chang, L. C., Huang, C. W., & Kao, I. F. (2016). Prediction of monthly regional groundwater levels through hybrid soft,computing techniques. Journal of Hydrology, 541, 965,976. 9. Dimpfl, T., & Peter, F. J. (2018). Analyzing volatility transmission using group transfer entropy. Energy Economics, 75, 368,376. 10. Eckhardt, K., & Ulbrich, U. J. J. O. H. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of hydrology, 284(1,4), 244,252. 11. Fernandes, V. J., de Louw, P. G., Bartholomeus, R. P., & Ritsema, C. J. (2024). Machine learning for faster estimates of groundwater response to artificial aquifer recharge. Journal of Hydrology, 637, 131418. 12. Faes, L., Porta, A., & Nollo, G.(2015).Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics. Entropy, 17(1), 277-303. 13. Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geoscience, 9(2), 161-167. 14. Lindner, M., Vicente, R., Priesemann, V., & Wibral, M. (2011). TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC neuroscience, 12, 1,22. 15. Lizier, J. T., Heinzle, J., Horstmann, A., Haynes, J. D., & Prokopenko, M. (2011). Multivariate information-theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity. Journal of computational neuroscience, 30, 85-107. 16. Maxwell, R. M., Condon, L. E., & Kollet, S. J. (2015). A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geoscientific model development, 8(3), 923-937. 17. Neri, M., Coulibaly, P., & Toth, E. (2022). Similarity of catchment dynamics based on the interaction between streamflow and forcing time series: Use of a transfer entropy signature. Journal of Hydrology, 614, 128555. 18. Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7). 19. Scibek, J., Allen, D. M., Cannon, A. J., & Whitfield, P. H. (2007). Groundwater–surface water interaction under scenarios of climate change using a high,resolution transient groundwater model. Journal of Hydrology, 333(2,4), 165,181. 20. Stetter, O., Battaglia, D., Soriano, J., & Geisel, T. (2012). Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. 21. Sakakibara, K., Tsujimura, M., Song, X., & Zhang, J. (2017). Spatiotemporal variation of the surface water effect on the groundwater recharge in a low,precipitation region: Application of the multi,tracer approach to the Taihang Mountains, North China. Journal of Hydrology, 545, 132,144. 22. Jiang, X. W., Wan, L., Wang, X. S., Ge, S., & Liu, J. (2009). Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophysical Research Letters, 36(24). 23. Tsai, W. P., Chiang, Y. M., Huang, J. L., & Chang, F. J. (2016). Exploring the mechanism of surface and ground water through data,driven techniques with sensitivity analysis for water resources management. Water Resources Management, 30, 4789,4806. 24. Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., & Wibral, M. (2014). Efficient transfer entropy analysis of non-stationary neural time series. PloS one, 9(7), e102833. 25. Wibral, M., Vicente, R., & Lindner, M. (2014). Transfer entropy in neuroscience. Directed information measures in neuroscience, 3-36. 26. Wang, T., Franz, T. E., & Zlotnik, V. A. (2015). Controls of soil hydraulic characteristics on modeling groundwater recharge under different climatic conditions. Journal of Hydrology, 521, 470,481. 27. Wiebe, A. J., & Rudolph, D. L. (2020). On the sensitivity of modelled groundwater recharge estimates to rain gauge network scale. Journal of Hydrology, 585, 124741. 28. Yu, H. L., & Lin, Y. C. (2015). Analysis of space–time non,stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. Journal of Hydrology, 525, 585,597. 29. Yu, H. L., & Chu, H. J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381(3,4), 239,247. 30. Ziolkowska, J. R., & Reyes, R. (2017). Groundwater level changes due to extreme weather—an evaluation tool for sustainable water management. Water, 9(2), 117. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信