§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2208202400482600
DOI 10.6846/tku202400698
論文名稱(中文) 應用模糊推論評估軌道運輸韌性之研究
論文名稱(英文) Applying Fuzzy Inference for Assessing Railway Transportation Systems Resilience
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 運輸管理學系運輸科學碩士班
系所名稱(英文) Department of Transportation Management
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 112
學期 2
出版年 113
研究生(中文) 蘇郁涵
研究生(英文) Yu-Han Su
學號 611660035
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2024-06-24
論文頁數 137頁
口試委員 指導教授 - 許超澤(hsuchao@mail.tku.edu.tw)
口試委員 - 劉建浩
口試委員 - 黃俊能
關鍵字(中) 關鍵基礎設施
交通運輸韌性
軌道運輸韌性
模糊推論
逐步權重比率分析法
修正式折衷排序法
關鍵字(英) Critical Infrastructure
Transportation Resilience
Railway Resilience
Fuzzy Inference
SWARA
modified VIKOR
第三語言關鍵字
學科別分類
中文摘要
近年來自然災害頻發,產生之衝擊影響著交通運輸系統的穩定性,交通運輸設施係為我國國家關鍵基礎設施之一,與其他關鍵基礎設施存在相互依存性,在國家運作中扮演重要角色,因此提升交通運輸系統抗災能力已成為重要研究課題。為應對氣候變遷帶來之衝擊,各國嘗試將韌性思維導入防災政策中,相較於過往風險評估之觀點,以韌性思維探討將更為嚴謹。然過往研究軌道運輸系統安全多以風險評估、脆弱性之角度探討,較少基於韌性概念進行研究,且我國目前仍未有基於交通韌性特徵的軌道運輸韌性評估模型,因此建立一套完整的軌道運輸韌性評估架構實有必要。
傳統評估架構多以多評準決策方法配合績效評估進行分析,往往受限於數據的本質、決策者的主觀判斷或外部環境的變化導致研究數據存在不確定性和模糊性,因此本研究應用模糊推論,除了能夠完善地處理決策過程中數據造成的不確定性和模糊性之外,模糊推論系統中的隸屬函數和模糊規則,亦增加了決策過程的靈活性和適應性,使研究在實際應用中更加實用且更適合處理多變環境的決策問題。為了實際應用此評估架構,本研究以國內軌道運輸中,五座大眾捷運系統系統進行實證分析,邀請專家學者對系統軌道運輸韌性表現填答,再以SWARA搭配modified VIKOR進行績效評估,依據評估結果了解軌道運輸兩系統距離理想解之差距,並提出各系統需改善之項目。
本研究建構軌道運輸系統韌性評估架構,包含三大構面(災前準備性、災時穩固性及災後備援性)和九項評估準則,根據模糊推論結果顯示,災後備援性為最具影響軌道運輸系統韌性之構面,代表充沛的備援機具、零組件以及迅速的支援修復的能力是提升軌道運輸系統韌性的基礎,接著,透過逐步權重比率分析法計算準則權重,可得各構面下權重最高的準則分別為:「基礎設施可靠性及妥善率」、「基礎設施防護及備用的電訊系統」、「維生設備及搶修機具與零組件」,最後,透過修正式折衷排序法判斷臺灣五座大眾捷運系統須優先改善之準則項目,發現不論哪座系統皆應優先改善「基礎設施防護」及「備用的電訊系統、維生設備及搶修機具與零組件」兩準則項目,顯示有效的基礎設施防護可以減少破壞性事件對系統的影響,並可在災害發生時減少所受之損害,以及軌道運輸系統應先以準備各類軌道運輸設施相關零組件及子系統等設備機具為主,以供災時若主要系統或部分系統失效時,有各類備援系統或零組件供軌道運輸系統盡速恢復或維持基本服務水準。
英文摘要
In recent years, the frequent occurrence of natural disasters has impacted the stability of transportation systems. Transportation infrastructure is one of the nation's critical infrastructures and is interdependent with other key infrastructures, playing a crucial role in national operations. Therefore, enhancing the disaster resilience of transportation systems has become an important research topic. To address the impacts of climate change, countries are attempting to incorporate resilience thinking into disaster prevention policies. Compared to past risk assessment perspectives, resilience thinking provides a more rigorous exploration. However, past research has often focused on risk assessment and vulnerability, with limited studies based on resilience concepts. Furthermore, there is currently no rail transportation resilience assessment model based on transportation resilience in our country. Therefore, it is essential to establish a comprehensive rail transportation resilience assessment framework.
Traditional assessment frameworks often employ multi-criteria decision-making methods in conjunction with performance evaluation, but they are often limited by the nature of the data, decision-makers' subjective judgments, or changes in the external environment, leading to uncertainty and fuzziness in research data. To address these limitations, this study applies fuzzy Inference. Fuzzy Inference can effectively handle the uncertainty and fuzziness caused by data in the decision-making process. Furthermore, the membership functions and fuzzy rules in fuzzy Inference systems enhance the flexibility and adaptability of the decision-making process, making the research more practical and suitable for handling decision problems in dynamic environments. To validate this assessment framework, this study conducts an empirical analysis of five metro systems in Taiwan. Experts and scholars were invited to evaluate the resilience performance of these systems. Subsequently, the Stepwise Weight Assessment Ratio Analysis (SWARA) method, combined with modified VIKOR, was used for performance evaluation. Based on the evaluation results, the gaps between each rail transportation system and the ideal solution were identified, and improvement items for each system were proposed.
This study constructs a resilience assessment framework for rail transportation systems, encompassing three dimensions (pre-disaster preparedness, during-disaster robustness, and Post-Disaster Redundancy) and nine evaluation criteria. Based on Fuzzy Inference analysis, post-disaster Redundancy is identified as the most influential dimension affecting the resilience of rail transportation systems, suggesting that sufficient backup equipment, components, and rapid support and repair capabilities are fundamental to enhancing the resilience of rail transportation systems.
Subsequently, the SWARA method was employed to calculate the criterion weights, revealing that the highest-weighted criteria within each dimension are: "Reliability and Availability of Infrastructure." and "Infrastructure Protection" and "Backup Telecommunication Systems, Equipment, Repair Equipment, And Spare Parts.” 
Finally, the modified VIKOR method was utilized to determine the priority improvement items for five metro systems in Taiwan. The results show that all systems should prioritize improvements in "Infrastructure Protection" and "Backup Telecommunication Systems, Equipment, Repair Equipment, And Spare Parts." These findings highlight the importance of effective infrastructure protection in mitigating the impact of disruptive events and reducing damage during disasters. Additionally, rail transportation systems should prioritize the preparation of various rail transportation facilities, components, and subsystems to ensure the availability of backup systems or components for rapid restoration or maintenance of basic service levels in the event of system failures.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	III
表目錄	IV
第一章 緒論	1
1.1研究背景與研究動機	1
1.2研究目的	5
1.3研究範圍與研究限制	6
1.4研究流程	7
1.5研究貢獻	8
第二章 文獻回顧	9
2.1關鍵基礎設施	9
2.2交通運輸韌性	16
2.3軌道運輸型態之韌性	25
2.4德爾菲法	35
2.5模糊推論	37
2.6 逐步權重比率分析法(SWARA)	40
2.7 modified VIKOR	40
2.8小結	43
第三章 研究方法	45
3.1研究架構	45
3.2修正式德爾菲法分析程序	46
3.3 模糊推論	47
3.4逐步權重比率分析法(SWARA)	50
3.5 modified VIKOR分析程序	52
第四章 實證分析	54
4.1修正式德爾菲法之準則篩選	54
4.2模糊推論分析	60
4.3逐步權重比率分析法(SWARA)分析	69
4.4 modified VIKOR分析	71
第五章 結論與建議	77
5.1結論	78
5.2建議	82
參考文獻	85
附錄	103
附錄A修正式德爾菲法問卷	103
附錄B第二次修正式德爾菲法問卷	109
附錄C自然災害下軌道韌性評估問卷	115
附錄D自然災害下軌道運輸韌性評估準則重要程度問卷	131
附錄E 自然災害下軌道運輸韌性績效評估問卷	137

圖目錄
圖1.1研究流程圖	7
圖2.1關鍵基礎設施相互依存層級與關係示意圖	16
圖2.2本研究初擬軌道韌性評估架構	34
圖3.1研究流程圖	45
圖3.2模糊推論流程	48
圖4.1軌道運輸韌性評估構面、準則之層級架構	59
圖4.2模糊推論系統轉換過程	61
圖4.3模糊規則三維曲面圖(依軌道運輸韌性構面區分)	64
圖4.4模糊規則三維曲面圖(依災前準備性區分)	64
圖4.5模糊規則三維曲面圖(依災時穩固性區分)	65
圖4.6模糊規則三維曲面圖(依災後備援性區分)	65
圖4.7輸出變量(以災前準備性為例)	66

表目錄
表2-1美國定義關鍵基礎設施或產業	10
表2-2國外文獻對關鍵基礎設施之定義	11
表2-3我國現行關鍵基礎設施領域分類	13
表2-4國內文獻對關鍵基礎設施之定義	14
表2-5國內文獻常見之韌性定義	17
表2-6 運輸系統韌性定義整理	19
表2-7交通運輸系統韌性的關鍵能力	21
表2-8 韌性交通運輸系統的主要特徵	23
表2-9韌性評估構面之建立	25
表2-10鐵道運輸系統中常見之韌性定義	26
表2-11軌道運輸韌性構面初擬	28
表2-12軌道系統韌性評估準則彙整表	30
表2-13軌道韌性評估準則整合結果	31
表2-14模糊推論相關應用文獻	39
表2-15 modified VIKOR相關應用文獻	42
表4-1修正式德爾菲問卷填答之專家學者背景簡介	54
表4-2文獻回顧彙整之軌道韌性準則與定義	55
表4-3第一輪修正式德爾菲法修改後之軌道運輸韌性評估準則及定義	57
表4-4第二輪修正式德爾菲法之軌道運輸韌性評估準則篩選結果	59
表4-5模糊推論問卷之專家學者統計資料	60
表4-6輸入語意變量表	60
表4-7輸出語意變量表	60
表4-8軌道運輸韌性構面之模糊規則	62
表4-8災前準備性構面下評估準則之模糊規則	62
表4-9災時穩固性構面下評估準則之模糊規則	62
表4-10災後備援性構面下評估準則之模糊規則	62
表4-11本研究大眾捷運系統編碼與其描述	66
表4-12績效評估問卷之專家學者統計資料	67
表4-13專家評估值正規化之整合評估表	68
表4-14模糊推論韌性評估結果	68
表4-15 SWARA問卷之專家學者統計資料	69
表4-16各構面下評估準則平均重要度排名	69
表4-17 SWARA分析結果	70
表4-18專家群績效評估表	71
表4-19 w_j  ((f_j^*-f_ij ))⁄((f_j^*-f_j^- ) )計算(1/2)	72
表4-20 w_j  ((f_j^*-f_ij ))⁄((f_j^*-f_j^- ) )計算(2/2)	72
表4-21專家群方案群體效益(Si)與最大個體遺憾(Ri)	72
表4-22方案綜合效益(Qi)計算	73
表4-23各系統改善準則項目排序	74
表4-24首要改善類	75
表4-25次要改善類	76
表4-26基本改善類	76
表5-1臺灣軌道運輸系統韌性之優先改善項目	80
參考文獻
< 中文文獻 >
1.	內政部建築研究所(2008),災害脆弱度與回復力觀念運用於都市空間規劃與管理之研究。
2.	王楚瑄、顏坤鴻、何宗軒(2022)。IEC 61850標準架構下捷運供電系統電力監控之發展現況及未來趨勢。捷運技術第57期,頁115-150。
3.	王詩瑩(2017),城市關鍵基礎設施系統的脆弱性評估,哈爾濱工業大學學位論文。
4.	台灣風險分析學會(2017),「國家關鍵基礎設施防護」的重要性,全球風險觀點會刊。
5.	交通部運輸研究所(2016),運輸物流供應鏈恢復力之研究。
6.	交通部運輸研究所(2019),2020年版運輸政策白皮書-運輸部門因應氣候變遷調適與防災。
7.	朱惠中(2017),漫談關鍵基礎設施保護,務部調查局清流雙月刊,1月號,頁1至8。
8.	行政院國土安全辦公室(2018),國家關鍵基礎設施安全防護指導綱要。
9.	行政院國土安全辦公室(2021),國家關鍵基礎設施防護--演習參考手冊。
10.	行政院國家發展委員會(2014),國家氣候變遷調適行動計畫。臺北市:行政院。檢自:https://adapt.epa.gov.tw/dispPageBox/files/757.pdf
11.	行政院經濟建設委員會(2012),國家氣候變遷調適政策綱領。臺北市:行政院。
12.	何正友、馮玎、林聖、孫小君(2016),高速鐵路牽引供電系統安全風險評估研究綜述,西南交通大學學報,第51卷第三期,頁418至429。
13.	吳杰穎、黃昱翔(2011),颱洪災害脆弱度評估指標之建立:以南投縣水里鄉為例,都市與計畫季刊,2011,38卷,2期,頁195至218。
14.	吳清如、任雅婷、韋懿軒、劉士豪、曾佩如、朱珮芸、徐偉誌、李仕勤、蕭為元(2021),運輸系統因應氣候變遷調適之研究,交通部運輸研究所出版。
15.	李治綱(2001),鐵路永續運輸的願景與發展策略。行政院國家科學委員會補助專題研究計畫成果報告。
16.	李彥呈(2023)。建立混合多準則決策模型評估機場韌性之研究。﹝碩士論文。淡江大學﹞
17.	周苡均(2023)。考量社會脆弱度風險指標之救援物資配送最佳化。﹝碩士論文。國立臺北科技大學﹞
18.	林宏達、陳育洺(2005),建立以ANFIS模糊推論系統為基礎之電容瓷片外觀瑕疵分類與製程管制模式,朝陽學報,10期,頁1至41。
19.	柯雨瑞、曾麗文(2019),試論我國保護重大關鍵基礎設施機制的困境與對策,安全研究與情報學術研討會論文集,頁113至155。
20.	洪鴻智、徐牧謙、洪至萱(2021)。都會颱洪災害韌性變遷及其與脆弱度、調適力之連結。地理學報,(99),59-81。
21.	胡大瀛、吳宥萱(2016)。災害下考量永續因素之運輸系統恢復力最佳化模型建立之研究。臺北市:交通部運輸研究所。
22.	高瑞昌(2016)。利用灰關聯和ENTROPY方法分析工具機業經營績效。﹝碩士論文。國立高雄應用科技大學﹞
23.	國家災害防救科技中心(2012),防減災策略與施政優先課題建議報告。
24.	張皓雯(2013),電力系統關鍵基礎設施分析方法與評估,國立中央大學土木工程學系碩士論文。
25.	張福榮(2020),混合多準則決策模型評估國家關鍵基礎設施之韌性 - 以臺灣機場為例,臺北科技大學工業工程與管理研究所碩士論文。
26.	曹鎮(2009),以適應性網路模糊推論系統推估台灣氣候週期性之研究。中興大學水土保持學系碩士班,台中市。
27.	黃俊能、章光明(2013),從美國國土安全策略與相關法案探討國家關鍵基礎設施防護,102年度國土安全論壇,頁109至138。
28.	黃俊能、郭耀楨(2013),關鍵基礎設施風險評估機制之建立―以台北車站重要交通場站為例,前瞻科技與管理,3卷,1期,頁1至29。
29.	葉國傑(2010),交通關鍵基礎設施之災害防護研究,國立臺北科技大學土木與防災研究所學位論文。
30.	裴文、鄭永燦(2006),利用蟻元系統模擬德菲法之決策機制,中華管理學報,7卷,1期,頁97至110。
31.	劉建浩、林榮禾、曾國雄(2009),結合模糊積分與VIKOR模式評估航空公司服務品質,顧客滿意學刊,5卷,1期,頁175至199。
32.	劉建浩、葉怡廷、莊哲維(2012),混合模式於航空公司維修外包商選擇,運輸計劃學刊,41卷,2期,頁135至163。
33.	劉家佑(2005)。理想解類似度偏好順序評估方法之延伸及其應用〔碩士論文,淡江大學〕。
34.	蔡亞欣(2004),模糊範例學習推論系統於水位預測之研究,臺灣大學生物環境系統工程學系碩士班,台北市。
35.	謝政翰(2017)。應用機器學習演算法與模糊推論於股價漲跌預測模式建構之研究。﹝碩士論文。國立聯合大學﹞
36.	鍾健雄、黃俊能(2013)。「架構分析於國家關鍵基礎設施安全防護之應用」,2013年企業架構與資訊科技國際研討會(Symposium on Enterprise Architecture and Information Technology 2013,7SEAIT 2013),台北文化大學推廣教育部。
37.	蘇昭郎、鄧敏政、謝承憲、黃詩倩、吳佳容、李洋寧、周建成、李中生、簡賢文(2012)。關鍵基礎設施災害脆弱度評估與風險管理:災害衝擊評估方法 I。新北市,國家災害防救科技中心
38.	蘇顯星(2014),因應氣候變遷及恐怖攻擊之國家安全法制研析。立法院專題報告。
< 英文文獻 >
1.	Adjetey-Bahun, K., Birregah, B., Châtelet, E., Planchet, J. L., & Laurens-Fonseca, E. (2014). A simulation-based approach to quantifying resilience indicators in a mass transportation system. In ISCRAM.
2.	Adjetey-Bahun, K., Planchet, J. L., Birregah, B., & Châtelet, E. (2016). Railway transportation system's resilience: Integration of operating conditions into topological indicators. In NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium ,1163-1168. IEEE.
3.	Adger, W. N. (2000). Social and ecological resilience: are they related?. Progress in human geography, 24(3), 347-364.
4.	Adler, M., and Ziglio, E. (1996). Gazing into the Oracle-The Delphi Method and its Application to Social Policy and Public Health. Jessica Kingsley Publishers.
5.	Aghdaie, M. H., Zolfani, S. H., & Zavadskas, E. K. (2013). Decision making in machine tool selection: An integrated approach with SWARA and COPRAS-G methods. Engineering economics, 24(1), 5-17.
6.	Al-Hawari, T., Khrais, S., Al-Araidah, O., & Al-Dwairi, A. F. (2011). 2D laser scanner selection using fuzzy logic. Expert Systems with Applications, 38(5), 5614-5619.
7.	Alimardani, M., Hashemkhani Zolfani, S., Aghdaie, M. H., & Tamošaitienė, J. (2013). A novel hybrid SWARA and VIKOR methodology for supplier selection in an agile environment. Technological and economic development of economy, 19(3), 533-548.
8.	Akgun, I., Kandakoglu, A., & Ozok, A. F. (2010). Fuzzy integrated vulnerability assessment model for critical facilities in combating the terrorism. Expert Systems with Applications, 37(5), 3561-3573.
9.	Amoaning-Yankson, S., & Amekudzi-Kennedy, A. (2017). Transportation System Resilience: Opportunities to Expand from Principally Technical to Sociotechnical Approaches. Transportation Research Record, 2604(1), 28-36.
10.	Aqlan, F., & Lam, S. S. (2015). A fuzzy-based integrated framework for supply chain risk assessment. International journal of production economics, 161, 54-63.
11.	Aqlan, F. (2016). A software application for rapid risk assessment in integrated supply chains. Expert Systems with Applications, 43, 109-116.
12.	Australian Cyber Security Centre. (2017). Australian Cyber Security Centre 2017.
13.	Ayaz, İ. S., Bucak, U., Mollaoğlu, M., & Esmer, S. (2022). Resilience strategies of ports against covid-19 in terms of chaos theory. Marine Policy, 146, 105323.
14.	Aydin, N. Y., Duzgun, H. S., Heinimann, H. R., Wenzel, F., & Gnyawali, K. R. (2018). Framework for improving the resilience and recovery of transportation networks under geo-hazard risks. International journal of disaster risk reduction,31, 832-843.
15.	Aydin, N. Y., Duzgun, H. S., Wenzel, F., & Heinimann, H. R. (2018). Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards. Natural Hazards, 91(1), 37-68.
16.	Ayyub, B. M. (2015). Practical resilience metrics for planning, design, and decision making. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(3), 04015008.
17.	Azadeh, A., Atrchin, N., Salehi, V., & Shojaei, H. (2014). Modelling and improvement of supply chain with imprecise transportation delays and resilience factors. International Journal of Logistics Research and Applications, 17(4), 269-282.
18.	Branscomb, L. M. 2006.Sustainable cities: Safety and Security, Technology in Society, 28, 225-234.
19.	Barnett, J., & Adger, W. N. (2007). Climate change, human security and violent conflict. Political geography, 26(6), 639-655.
20.	Bababeik, M., Khademi, N., Chen, A., & Nasiri, M. M. (2017). Vulnerability analysis of railway networks in case of multi-link blockage. Transportation Research Procedia, 22, 275-284.
21.	Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network component importance measures. Reliability Engineering & System Safety,117, 89-97.
22.	Berche, B., Von Ferber, C., Holovatch, T., & Holovatch, Y. (2009). Resilience of public transport networks against attacks. The European Physical Journal B,71(1), 125-137. 
23.	Bešinović, N. (2020). Resilience in railway transport systems: a literature review and research agenda. Transport Reviews, 40(4), 457-478.
24.	Bešinović, N., Wang, Y., Zhu, S., Quaglietta, E., Tang, T., & Goverde, R. M. (2019). Integrated train and passenger disruption management for urban railway lines. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC) 3182-3187.
25.	Bocchini, P., Frangopol, D. M., Ummenhofer, T., & Zinke, T. (2014). Resilience and sustainability of civil infrastructure: Toward a unified approach. Journal of Infrastructure Systems, 20(2).
26.	Brans, J., & Vincke, P. J. M. S. (1985). A preference ranking organisation method: The PROMETHEE method forMCDM. Management Science, 31(6), 647656.
27.	Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., ... & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake spectra, 19(4), 733-752.
28.	Bubeck, P., Dillenardt, L., Alfieri, L., Feyen, L., Thieken, A. H., & Kellermann, P. (2019). Global warming to increase flood risk on European railways. Climatic Change, 155, 19-36.
29.	Calvert, S. C., & Snelder, M. (2018). A methodology for road traffic resilience analysis and review of related concepts. Transportmetrica A: transport science, 14(1-2), 130-154.
30.	Candelieri, A., Galuzzi, B. G., Giordani, I., & Archetti, F. (2019). Vulnerability of public transportation networks against directed attacks and cascading failures. Public Transport, 11(1), 27–49.
31.	Chan, R., & Schofer, J. L. (2016). Measuring transportation system resilience: Response of rail transit to weather disruptions. Natural Hazards Review, 17(1).
32.	Chandramohan, A., Rao, M. V. C., & Arumugam, M. S. (2006). Two new and useful defuzzification methods based on root mean square value. Soft computing, 10, 1047-1059.
33.	Chang, C. L. (2010). A modified VIKOR method for multiple criteria analysis. Environmental monitoring and assessment, 168, 339-344.
34.	Chang, P. C., Tsou, N. T., Yuan, B. J. C., and Huang, C. C. (2002). Development
35.	trends in Taiwan's opto-electronics industy. Technovation, 22, 161-173.
36.	Chen, Y. (2013). Improving railway safety risk assessment study. University of Birmingham, 2013.
37.	Chang, S. E., & Shinozuka, M. (2004). Measuring improvements in the disaster resilience of communities. Earthquake Spectra, 20(3), 739-755.
38.	Chen, K. H., Yien, J. M., Chiang, C. H., Tsai, P. C., & Tsai, F. S. (2019). Identifying key sources of city air quality: A hybrid MCDM model and improvement strategies. Applied Sciences,9(7), 1414.
39.	Chen, Z., & Rose, A. (2018). Economic resilience to transportation failure: a computable general equilibrium analysis. Transportation,45(4), 1009-1027.
40.	Chen, C. C., Chen, J., & Lin, P. C. (2009). Identification of significant threats and errors affecting aviation safety in Taiwan using the analytical hierarchy process. Journal of Air Transport Management, 15(5), 261-263.
41.	Chen, L., & Miller-Hooks, E. (2012). Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport. Transportation Science, 46(1), 109-123.
42.	Cheng, L., Wang, Y., & Peng, Y. (2021). Research on risk assessment of high-speed railway operation based on network ANP. Smart and Resilient Transportation, 3(1), 37-51.
43.	Colicchia, C., Dallari, F., & Melacini, M. (2010). Increasing supply chain resilience in a global sourcing context. Production planning & control,21(7), 680-694.
44.	Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience: A foundation for operational metrics. Transport policy,18(2), 307-317.
45.	Cornish, E. (Ed.). (1977). The study of the future: An introduction to the art and
46.	science of understanding and shaping tomorrow's world. Transaction Publishers.
47.	Dalalah, D., & Bataineh, O. (2009). A fuzzy logic approach to the selection of the best silicon crystal slicing technology. Expert Systems with Applications,36(2), 3712-3719.
48.	Dawson, D., Shaw, J., & Gehrels, W. R. (2016). Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England. Journal of Transport Geography, 51, 97-109.
49.	Dalkey, N., and Helmer, O. (1963). An experimental application of the Delphi
50.	method to the use of experts. Management science, 9(3), 458-467.
51.	Deloukas, A., & Apostolopoulou, E. (2017). Static and dynamic resilience of transport infrastructure and demand: the case of the Athens metro. Transportation research procedia, 24, 459-466.
52.	Derrible, S., & Kennedy, C. (2010a). Characterizing metro networks: State, form, and structure. Transportation, 37(2), 275–297.
53.	Derrible, S., & Kennedy, C. (2010b). The complexity and robustness of metro networks. Physica A: Statistical Mechanics and its Applications, 389(17), 3678–3691.
54.	Diab, E., & Shalaby, A. (2020). Metro transit system resilience: Understanding the impacts of outdoor tracks and weather conditions on metro system interruptions. International Journal of Sustainable Transportation, 14(9), 657-670.
55.	D’Lima, M., & Medda, F. (2015). A new measure of resilience: An application to the London Underground. Transportation Research Part A: Policy and Practice, 81, 35-46.
56.	Donovan, B., & Work, D. B. (2017). Empirically quantifying city-scale transportation system resilience to extreme events. Transportation Research Part C: Emerging Technologies, 79, 333-346.
57.	Dorbritz, R. (2011). Assessing the resilience of transportation systems in case of large-scale disastrous events. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 8, p. 1070). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
58.	Engler, E., Gewies, S., Banyś, P., & Grunewald, E. (2018). Trajectory-based multimodal transport management for resilient transportation. Transport Problems,13.
59.	European Organisation for the Safety of Air Navigation(EUROCONTROL) (2009), “A white paper on resilience engineering for ATM.”
60.	El-Maissi, A. M., Argyroudis, S. A., Kassem, M. M., Leong, L. V., & Mohamed Nazri, F. (2022). An integrated framework for the quantification of road network seismic vulnerability and accessibility to critical services. Sustainability, 14(19), 12474.
61.	Fallahpour, A., Nayeri, S., Sheikhalishahi, M., Wong, K. Y., Tian, G., & Fathollahi-Fard, A. M. (2021). A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environmental Science and Pollution Research, 1-21.
62.	Faturechi, R., & Miller-Hooks, E. (2015). Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. Journal of infrastructure systems, 21(1), 04014025.
63.	Faturechi, R., & Miller-Hooks, E. (2014). Travel time resilience of roadway networks under disaster. Transportation research part B: methodological,70, 47-64.
64.	Freckleton, D., Heaslip, K., Louisell, W., & Collura, J. (2012). Evaluation of resiliency of transportation networks after disasters. Transportation research record, 2284(1), 109-116.
65.	Ferranti, E., Chapman, L., Lowe, C., McCulloch, S., Jaroszweski, D., & Quinn, A. (2016). Heat-related failures on southeast England’s railway network: Insights and implications for heat risk management. Weather, Climate, and Society, 8(2), 177-191.
66.	Forero-Ortiz, E., Martínez-Gomariz, E., Cañas Porcuna, M., Locatelli, L., & Russo, B. (2020). Flood risk assessment in an underground railway system under the impact of climate change—a case study of the Barcelona Metro. Sustainability, 12(13), 5291.
67.	Fowles, J. (1978). Handbook of futures research. Westport: Greenwood Press.
68.	Garmabaki, A. H. S., Odelius, J., Thaduri, A., Famurewa, S. M., Kumar, U., Strandberg, G., & Barabady, J. (2022). Climate change impact assessment on railway maintenance. In 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland, August 28-September 1, 2022. Research Publishing.
69.	Günay, E. E., Park, K., Aydoğan, S., & Okudan Kremer, G. E. (2019). Vaccine Distribution Strategies against Polio: An Analysis of Turkey Scenario. IISE Annual Conference and Expo.
70.	Gu, W., Yu, J., Ji, Y., van der Gun, J. P., Pel, A. J., Zhang, H. M., & van Arem, B. (2017). Optimizing tailored bus bridging paths. TRB 2018: 97th annual meeting of the Transportation Research Board, Washington, DC.
71.	Guo, Q., Amin, S., Hao, Q., & Haas, O. (2020). Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models. Reliability Engineering & System Safety, 201, 106956.
72.	Goncalves, L. A. P. J., & Riberio, P. J. G. (2020). Resilience of urban transportation systems. Concept, characteristics, and methods. Journal of Transport Geography, 85, 102727.
73.	Gordon, T. J., & Helmer, O. (1964). Report on a long-range forecasting study.
74.	Hadj-Mabrouk, H. (2019). Contribution of artificial intelligence to risk assessment of railway accidents. Urban Rail Transit, 5(2), 104-122.
75.	Hasson, F., Keeney, S., & McKenna, H. (2000). Research guidelines for the Delphi survey technique. Journal of advanced nursing, 32(4), 1008-1015.
76.	Heaslip, K., Louisell, W., & Collera, J. (2009). A Methodology to Evaluate Transportation Resiliency for Regional Networks. Presented at 88th Annual Meeting of the Transportation Research Board, Washington, D.C .
77.	Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1), 1-23.
78.	Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016), A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47-61.
79.	Hsu, C. C., Kuo, Y. W., and Liou, J. J. (2023). A Hybrid Model for Evaluating the Bikeability of Urban Bicycle Systems. Axioms, 12(2), 155.
80.	Huang, S. W., Liou, J. J., Chuang, H. H., & Tzeng, G. H. (2021). Using a modified VIKOR technique for evaluating and improving the national healthcare system quality. Mathematics, 9(12), 1349.
81.	Huang, C. Y., Yang, M. J., Li, J. F., & Chen, H. (2021). A DANP-based NDEA-mop approach to evaluating the patent commercialization performance of industry–academic collaborations. Mathematics, 9(18), 2280.
82.	Huang, C. N., and Lo, H. W. (2021). A Hybrid Z-Based MADM Model for the Evaluation of Urban Resilience. Mathematical Problems in Engineering, 2021.
83.	Huang, C. N., Liou, J. J. H., Lo, H. W., and Chang, F. J. (2021). Building an assessment model for measuring airport resilience. Journal of Air Transport Management, 95, 102101.
84.	Huang, Y. P., Kuo, W. L., Basanta, H., & Lee, S. H. (2021). Evaluating Power Rehabilitation Actions Using a Fuzzy Inference Method. International Journal of Fuzzy Systems, 23(7), 1919-1933.
85.	Hwang, C. L., & Yoon, K. (2012). Multiple attribute decision making: methods and applications a state-of-the-art survey (Vol. 186). Springer Science & Business Media.
86.	Ilbeigi, M. (2019). Statistical process control for analyzing resilience of transportation networks. International Journal of Disaster Risk Reduction, 33, 155-161. 
87.	International Electrotechnical Commission IEC TR 61850-1. (2013). Communication networks and systems for power utility automation - Part 1: Introduction and overview.
88.	Ilalokhoin, O., Pant, R., & Hall, J. W. (2023). A model and methodology for resilience assessment of interdependent rail networks–Case study of Great Britain's rail network. Reliability Engineering & System Safety,229, 108895.
89.	Imran, M., Agha, M. H., Ahmed, W., Sarkar, B., & Ramzan, M. B. (2020). Simultaneous customers and supplier’s prioritization: an AHP-based fuzzy inference decision support system (AHP-FIDSS). International Journal of Fuzzy Systems,22(8), 2625-2651. 
90.	IMPROVER. (2019). Improved risk evaluation and implementation of resilience concepts to Critical Infrastructure. Retrieved from http://improverproject.eu/
91.	Ip, W. H., & Wang, D. (2011). Resilience and friability of transportation networks: evaluation, analysis and optimization. IEEE Systems Journal,5(2), 189-198.
92.	Ivory, V., & Trotter, M. (2020). Resilience, freight mobility and governance: mapping the actors in New Zealand’s transport network. In 39th Australasian Transport Research Forum (ATRF). Auckland.
93.	Johnsen, S. O., & Veen, M. (2011). Risk assessment and resilience of critical communication infrastructure in railways. Cognition, Technology & Work, 15(1), 95–107.
94.	Janić, M. (2015). Reprint of ‘‘Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event’’. Transportation Research Part A, 71, 77–92.
95.	Jamshidi, A., Yazdani-Chamzini, A., Yakhchali, S. H., & Khaleghi, S. (2013). Developing a new fuzzy inference system for pipeline risk assessment. Journal of loss prevention in the process industries, 26(1), 197-208. 
96.	Jiao, L., Li, D., Zhang, Y., Zhu, Y., Huo, X., & Wu, Y. (2021). Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms. Land, 10(12), 1298.
97.	Jin, J. G., Tang, L. C., Sun, L., & Lee, D. H. (2014). Enhancing metro network resilience via localized integration with bus services. Transportation Research Part E: Logistics and Transportation Review,63, 17-30.
98.	Kahraman, C., Cebeci, U., & Ulukan, Z. (2003). Multi‐criteria supplier selection using fuzzy AHP. Logistics information management, 16(6), 382-394.
99.	Kammouh, O., Noori, A. Z., Taurino, V., Mahin, S. A., & Cimellaro, G. P. (2018). Deterministic and fuzzy-based methods to evaluate community resilience. Earthquake Engineering and Engineering Vibration, 17, 261-275.
100.	Kermanshachi, S., Nipa, T. J., & Pamidimukkala, A. (2021). Vulnerability Assessment and Model Development to Measure the Resilience Level of Transportation Infrastrucutre in North Texas. North Central Texas Council of Governments (NCTCOG) Research Report
101.	Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and economic development of economy , 17(4), 645-666.
102.	Khaled, A. A., Jin, M., Clarke, D. B., & Hoque, M. A. (2015). Train design and routing optimization for evaluating criticality of freight railroad infrastructures. Transportation Research Part B: Methodological, 71, 71-84.
103.	Kreisel, W. E. (1984). Representation of the environmental quality profile of a metropolitan area. Environmental Monitoring & Assessment, 4(1),15-33.
104.	Lam, C. Y., & Tai, K. (2018). Modeling infrastructure interdependencies by integrating network and fuzzy set theory. International Journal of Critical Infrastructure Protection, 22, 51-61.
105.	Leobons, C. M., Campos, V. B. G., & de Mello Bandeira, R. A. (2019). Assessing urban transportation systems resilience: a proposal of indicators. Transportation research procedia, 37, 322-329.
106.	Leu, G., Abbass, H., & Curtis, N. (2010). Resilience of ground transportation networks: a case study on Melbourne.
107.	Lewis, T. G. (2006). Critical Infrastructure Protection in Homeland Security: defending a networked nation. John Wiley & Sons.
108.	Liao, T. Y., Hu, T. Y., & Ko, Y. N. (2018). A resilience optimization model for transportation networks under disasters. Natural hazards, 93(1), 469-489.
109.	Lima-Junior, F. R., & Carpinetti, L. C. R. (2020). An adaptive network-based fuzzy inference system to supply chain performance evaluation based on SCOR® metrics. Computers & Industrial Engineering,139, 106191.
110.	Lin, P. J., Shiue, Y. C., Tzeng, G. H., & Huang, S. L. (2019). Developing a sustainable long-term ageing health care system using the DANP-mV model: Empirical case of Taiwan. International journal of environmental research and public health, 16(8), 1349.
111.	Linstone, H. A., and Turnoff, M. (1975). The delphi method. Reading, MA: Addison-Wesley, 3-12.
112.	Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., Kröger, W., Lambert, J. H., Levermann, A., Montreuil, B., Nathwani, J., Nyer, R., Renn, O., Scharte, B., Scheffler, A., Schreurs, M. and Thiel-Clemen, T. (2014). Changing the resilience paradigm. Nature Climate Change, 4(6), 407-409.
113.	Liu, F., Zhu, Y., Bešinović, N., Goverde, R. M. P., & Xu, R. (2019). A mixed integer programming model for train rescheduling in high-frequency metro systems during partial blockages. In Proceedings of the 8th international conference on Railway Operations Modelling and Analysis (IAROR): RailNorrkoping, Norrkoping, Sweden.
114.	Litman, T. (2011). Evaluating Accessibility for Transportation Planning. Victoria, BC: Victoria Transport Policy Institute.
115.	Lu, Q. C. (2018). Modeling network resilience of rail transit under operational incidents. Transportation Research Part A: Policy and Practice, 117, 227-237.
116.	Lu, Y., Li, Q., & Xiao, W. (2013). Case-based reasoning for automated safety risk analysis on subway operation: Case representation and retrieval. Safety science, 57, 75-81.
117.	Ma, Z., Yang, X., Wu, J., Chen, A., Wei, Y., & Gao, Z. (2022). Measuring the resilience of an urban rail transit network: A multi-dimensional evaluation model. Transport Policy, 129, 38-50.
118.	Marteaux, O. (2016). Tomorrow’s railway and climate change adaptation: Executive report. Rail Safety and Standards Board.
119.	Markolf, S. A., Hoehne, C., Fraser, A., Chester, M. V., & Underwood, B. S. (2019). Transportation resilience to climate change and extreme weather events–Beyond risk and robustness. Transport policy, 74, 174-186.
120.	Markowski, A. S., Mannan, M. S., & Bigoszewska, A. (2009). Fuzzy logic for process safety analysis. Journal of loss prevention in the process industries, 22(6), 695-702.
121.	Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems–A discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34.
122.	Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the institution of electrical engineers , 121(12), 1585-1588.
123.	Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633-1643.
124.	Morshed, S. A., Arafat, M., Mokhtarimousavi S., Khan, S. S. & Amine, K. (2021). 8R Resilience Model: A stakeholder-centered approach of disaster resilience for transportation infrastructure and network. Transportation Engineering, 4, 100058.
125.	MOWE-IT. (2019). Management of weather events in the transport System. Retrieved from www. mowe-it.eu
126.	Murray-Tuite, P. M. (2006). A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions. In Proceedings of the 2006 winter simulation conference, 1398-1405.
127.	Murry Jr, J. W., and Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The review of higher education, 18(4), 423-436.
128.	Muller, A. (2002). Education, income inequality, and mortality: a multiple regression analysis. Bmj, 324(7328), 23.
129.	Meesit, R., & Andrews, J. (2019). Optimising rail-replacement bus services during infrastructure possessions. Infrastructure Asset Management 7(3), 221-238.
130.	Mendel, J. M. (1995). Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE, 83(3), 345-377.
131.	Miller, N., Satsrisakul, Y., Faist, K., Fehling-Kaschek, M., Crabbe, S., Poliotti, M., ... & Cazzato, E. (2021). A risk and resilience assessment approach for railway networks. Proceedings of the 31st European Safety and Reliability Conference (ESREL), 19-23.
132.	NATO. (2023). NATO Climate Change and Security Impact Assessment.
133.	Ngamkhanong, C., Kaewunruen, S., & Costa, B. J. A. (2018). State-of-the-art review of railway track resilience monitoring. Infrastructures, 3(1), 3.
134.	Nakandala, D., Lau, H., & Zhao, L. (2017). Development of a hybrid fresh food supply chain risk assessment model. International Journal of Production Research, 55(14), 4180-4195.
135.	Nakanishi, H., Black, J., & Matsuo, K. (2014). Disaster resilience in transportation: Japan earthquake and tsunami 2011. International Journal of Disaster Resilience in the Built Environment.
136.	National Academies of Sciences, Engineering, and Medicine. (2012). Airport climate adaptation and resilience.
137.	Nogal, M., O'Connor, A., Caulfield, B., & Martinez-Pastor, B. (2016). Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model. Reliability Engineering & System Safety, 156, 84-96.
138.	Okwu, M. O., & Tartibu, L. K. (2020). Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology. International journal of engineering business management, 12, 1847979019899542.
139.	Omer, M., Mostashari, A., & Nilchiani, R. (2013). Assessing resilience in a regional road-based transportation network. International Journal of Industrial and Systems Engineering. 13(4), 389-408.
140.	Omair, M., Noor, S., Tayyab, M., Maqsood, S., Ahmed, W., Sarkar, B., & Habib, M. S. (2021). The Selection of the Sustainable Suppliers by the Development of a Decision Support Framework Based on Analytical Hierarchical Process and Fuzzy Inference System. International Journal of Fuzzy Systems, 23(7), 1986-2003.
141.	Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
142.	Opricovic, S., and Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.
143.	Ortiz-Barrios, M., Gul, M., Yucesan, M., Alfaro-Sarmiento, I., Navarro-Jiménez, E., & Jiménez-Delgado, G. (2022). A fuzzy hybrid decision-making framework for increasing the hospital disaster preparedness: The colombian case. International journal of disaster risk reduction, 72, 102831.
144.	Osogami, T., Imamichi, T., Mizuta, H., Suzumura, T., & Ide, T. (2013). Toward simulating entire cities with behavioral models of traffic. IBM Journal of Research and Development, 57(5), 6-1.
145.	Oslakovic, I. S., ter Maat, H., Hartmann, A., & Dewulf, G. (2013). Risk assessment of climate change impacts on railway infrastructure. In Proc. Engineering Project Organization Conference .
146.	Otto, A., Kellermann, P., Thieken, A. H., Costa, M. M., Carmona, M., & Bubeck, P. (2019). Risk reduction partnerships in railway transport infrastructure in an alpine environment. International Journal of Disaster Risk Reduction, 33, 385-397.
147.	Pant, S. B. (2013). Transportation network resiliency: A study of self-annealing. Utah State University.
148.	Paula, S. 2004. Regional public-private partnerships – Addressing Critical Infrastructure Interdependencies and Homeland Security Preparedness, Presentation at the 2004 PNWER Annual Summit, Victoria BC. July 14, 2004.
149.	Pant, R., Barker, K., & Zobel, C. W. (2014). Static and dynamic metrics of economic resilience for interdependent infrastructure and industry sectors. Reliability Engineering & System Safety, 125, 92-102.
150.	Pant, R., Hall, J. W., & Blainey, S. P. (2016). Vulnerability assessment framework for interdependent critical infrastructures: case-study for Great Britain’s rail network. European Journal of Transportation and Infrastructure Research, 16(1), 174-194.
151.	Perry, R. W., & Lindell, M. K. (2003). Preparedness for emergency response: Guidelines for the emergency planning process. Disasters, 27(4), 336-350.
152.	Powrie, W. (2014). On track: the future for rail infrastructure systems. In Proceedings of the Institution of Civil Engineers-Civil Engineering 167(4),177-185. Thomas Telford Ltd.
153.	Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The international journal of logistics management.
154.	Pourjavad, E., & Mayorga, R. V. (2019). A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system. Journal of Intelligent Manufacturing, 30(3), 1085-1097.
155.	Pourjavad, E., & Shahin, A. (2018). The application of Mamdani fuzzy inference system in evaluating green supply chain management performance. International Journal of Fuzzy Systems,20(3), 901-912.
156.	Public Safety Canada. (2009). National strategy for critical infrastructure.
157.	Quinn, A. D., Jack, A., Hodgkinson, S., Ferranti, E. J. S., Beckford, J., & Dora, J. (2017). Rail adapt: Adapting the railway for the future. A Report for the International Union of Railways (UIC).
158.	RailAdapt. (2019). Retrieved from https://uic.org/adapting-to-climate-changes
159.	Reggiani, A. (2013). Network resilience for transport security: Some methodological considerations. Transport Policy, 28, 63-68.
160.	Rezaee, M. J., & Yousefi, S. (2018). An intelligent decision making approach for identifying and analyzing airport risks. Journal of Air Transport Management, 68, 14-27.
161.	Richey, J. S., Mar, B. W., and Horner, R. R. (1985). The delphi technique in
162.	environmental assessment-implementation and effectiveness. Journal of
163.	Environmental Management, 21(2), 135-146.
164.	Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383-398.
165.	Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons.
166.	Roszkowska, E., Filipowicz-Chomko, M., Łyczkowska-Hanćkowiak, A., & Majewska, E. (2024). Extended Hellwig’s Method Utilizing Entropy-Based Weights and Mahalanobis Distance: Applications in Evaluating Sustainable Development in the Education Area. Entropy, 26(3), 197.
167.	Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue française d'informatique et de recherche opérationnelle, 2(8), 57-75.
168.	Saliani, S., Hamid, H., Badeli, S., and Boghrati, H. (2013). Resilience of robust transport networks:Evaluate and quantify resiliency at pre-event conditions.
169.	Saadat, Y., Zhang, Y., Zhang, D., Ayyub, B. M., & Huang, H. (2018). Post-failure recovery strategies for metrorail transit networks with Washington DC As a case study. In ASME International Mechanical Engineering Congress and Exposition 52187, V013T05A060. American Society of Mechanical Engineers.
170.	Schweikert, A., Espinet, X., Goldstein, S., & Chinowsky, P. (2015). Resilience versus Risk: Assessing Cost of Climate Change Adaptation to California's Transportation System and the City of Sacramento, California. Transportation Research Record,2532(1), 13-20.
171.	Scheffran, J., & Remling, E. (2013). The social dimensions of human security under a changing climate. In Handbook on Climate Change and Human Security. 137-163.
172.	Schäfer, M. S., Scheffran, J., & Penniket, L. (2016). Securitization of media reporting on climate change? A cross-national analysis in nine countries. Security Dialogue, 47(1), 76-96.
173.	Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review, 5(1), 3-55.
174.	Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Fuzzy rule-based system. Introduction to Fuzzy Logic using MATLAB, 113-149.
175.	Simić, V., Soušek, R., & Jovčić, S. (2020). Picture fuzzy MCDM approach for risk assessment of railway infrastructure. Mathematics, 8(12), 2259.
176.	Song, L., Li, Q., List, G. F., Deng, Y., & Lu, P. (2017). Using an AHP-ISM based method to study the vulnerability factors of urban rail transit system. Sustainability, 9(6), 1065.
177.	Spiegler, V. L., Naim, M. M., & Wikner, J. (2012). A control engineering approach to the assessment of supply chain resilience. International Journal of Production Research,50(21), 6162-6187.
178.	Stanujkic, D., Karabasevic, D., & Zavadskas, E. K. (2015). A framework for the selection of a packaging design based on the SWARA method. Engineering Economics, 26(2), 181-187.
179.	Szymula, C., & Bešinović,N.(2019). Passenger-centered vulnerability assessment of railway networks. Manuscript submitted for publication. Transportation Research Part B: Methodological, 136, 30-61.
180.	Ta, C., Goodchild, A. V., & Pitera, K. (2009). Structuring a definition of resilience for the freight transportation system. Transportation Research Record, 2097(1), 19-25.
181.	Tanackov, I., Badi, I., Stević, Ž., Pamučar, D., Zavadskas, E. K., & Bausys, R. (2022). A novel hybrid interval rough SWARA–interval rough ARAS model for evaluation strategies of cleaner production. Sustainability, 14(7), 4343.
182.	Tang, J., & Heinimann, H. R. (2018). A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads. PloS one,13(1).
183.	Tang, Y., Bi, W., Varga, L., Dolan, T., & Li, Q. (2022). An integrated framework for managing fire resilience of metro station system: Identification, assessment and optimization. International Journal of Disaster Risk Reduction, 103037.
184.	Telford, A. (2020). A climate terrorism assemblage? Exploring the politics of climate change-terrorism-radicalisation relations. Political Geography, 79, 102150.
185.	Tesfamariam, S., & Saatcioglu, M. (2008). Seismic risk assessment of reinforced concrete buildings using fuzzy rule based modeling. In 14th World Conference on Earthquake Engineering, Beijing, China.
186.	THE COUNCIL OF THE EUROPEAN UNION. (2008). COUNCIL DIRECTIVE on the identification and designation of European critical infrastructures and the assessment of the  need to improve their protection. Official Journal of the European Union.
187.	Tian, B. L., & Liu, C.Y. (2011). Airport Emergency Capacity Assessment Model Based on an Interval-number Analytic Hierarchy Process. China Safety Science Journal, 21(3), 170-176 
188.	Tierney, K., & Bruneau, M. (2007). Conceptualizing and measuring resilience: A key to disaster loss reduction. TR News, (250).
189.	U.S. Department of Defense. (2019). Report on Effects of a Changing Climate to the Department of Defense.
190.	U.S. (2001). Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (USA PATRIOT ACT) Act of 2001.
191.	Uday, P., & Marais, K. (2015). Designing resilient systems‐of‐systems: A survey of metrics, methods, and challenges. Systems Engineering, 18(5), 491-510.
192.	Van Der Vegt, G. S., Essens, P., Wahlström, M., & George, G. (2015). Managing risk and resilience. Academy of Management Journal, 58(4), 971-980.
193.	Vugrin, E. D., Turnquist, M. A., & Brown, N. J. (2014). Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks. International Journal of Critical Infrastructures, 10(3-4), 218-246.
194.	Vugrin, E. D., Warren, D. E., & Ehlen, M. A. (2011). A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress, 30(3), 280-290.
195.	Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transport reviews, 38(4), 479-498.
196.	Wang, J. W., Wang, H. F., Zhou, Y. M., Wang, Y., & Zhang, W. J. (2019). On an integrated approach to resilient transportation systems in emergency situations. Natural Computing,18(4), 815-823.
197.	Wang, Y., Zhan J., Xu, X., Li, L., Chen P., and Hansen, M. (2019). Measuring the resilience of an airport network. Chinese Journal of Aeronautics, 32(12), 2694-2705.
198.	Wang, H., Zhou, J., Dun, Z., Cheng, J., Li, H., & Dun, Z. (2022). Resilience evaluation of high-speed railway subgrade construction systems in goaf sites. Sustainability, 14(13), 7806.
199.	Weilant, S., Strong, A., & Miller, B. (2019). Incorporating Resilience into Transportation Planning Assessment. RAND Social and Economic Well-Being (Program), Rand Corporation, National Research Council (U.S.), Transportation Research Board.
200.	Weik, N., Volk, M., Katoen, J. P., & Nießen, N. (2022). DFT modeling approach for operational risk assessment of railway infrastructure. International Journal on Software Tools for Technology Transfer, 24(3), 331-350.
201.	Wu, J., Li, D., Si, S., & Gao, Z. (2021). Reliability management of complex system. Frontiers of Engineering Management, 8(4), 477-479.
202.	Xiong, L., Teng, C. L., Zhu, B. W., Tzeng, G. H., & Huang, S. L. (2017). Using the D-DANP-mV model to explore the continuous system improvement strategy for sustainable development of creative communities. International Journal of Environmental Research and Public Health, 14(11), 1309.
203.	Xu, X., Chen, A., Jansuwan, S., Yang, C., & Ryu, S. (2018). Transportation network redundancy: Complementary measures and computational methods. Transportation Research Part B: Methodological, 114, 68-85.
204.	Yazıcıoğlu, A. Y., Roozbehani, M., & Dahleh, M. A. (2017) Resilient control of transportation networks by using variable speed limits. IEEE Transactions on Control of Network Systems, 5(4), 2011-2022.
205.	Ye, Q., & Ukkusuri, S. V., (2015). Resilience as an objective in the optimal reconstruction sequence for transportation networks. Journal of Transportation Safety & Security, 7(1), 91-105. 
206.	Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
207.	Zadeh, L. A. (1979). Fuzzy sets and information granularity. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers, 433-448.
208.	Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.
209.	Zarei, E., Ramavandi, B., Darabi, A. H., & Omidvar, M. (2021). A framework for resilience assessment in process systems using a fuzzy hybrid MCDM model. Journal of Loss Prevention in the Process Industries, 69, 104375.
210.	Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. Structural Safety, 62, 57-65.
211.	Zhang, X., and Miller-Hooks, E. (2015). Scheduling short-term recovery activities to maximize transportation network resilience. Journal of Computing in Civil Engineering, 29(6), 04014087.
212.	Zhang, X., Miller-Hooks, E., & Denny, K. (2015). Assessing the role of network topology in transportation network resilience. Journal of transport geography, 46, 35-45.
213.	Zhang, Z., Chai, H., & Guo, Z. (2022). Quantitative Resilience Assessment of the Network-Level Metro Rail Service's Responses to the COVID-19 Pandemic. Sustainable Cities and Society, 89, 104315.
214.	Zhang, Q., Zhuang, Y., Wei, Y., Jiang, H., & Yang, H. (2020). Railway safety risk assessment and control optimization method based on FTA-FPN: A case study of Chinese high-speed railway station. Journal of advanced transportation, 2020, 1-11.
215.	Zhang, W., Wang, N., and Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404-1413.
216.	Zhang, D. M., Du, F., Huang, H., Zhang, F., Ayyub, B. M., & Beer, M. (2018). Resiliency assessment of urban rail transit networks: Shanghai metro as an example. Safety Science, 106, 230-243.
217.	Zhao, J. N., Shi, L. N., & Zhang, L. (2017). Application of improved unascertained mathematical model in security evaluation of civil airport. International Journal of System Assurance Engineering and Management, 8(3), 1989-2000. 
218.	Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.
219.	Zhu, Y., & Goverde, R. M. P. (2017). System-based vulnerability measures for railway systems. In Proceedings of the 7th international conference on Railway Operations Modelling and Analysis (IAROR): RailLille, Lile, France.
220.	Zobel, C. W., & Khansa, L. (2014). Characterizing multi-event disaster resilience. Computers & Operations Research,42, 83-94.
221.	Zou, Z. H., Yi, Y., & Sun, J. N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental sciences, 18(5), 1020-1023.
222.	Zolfani, S. H., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Engineering economics, 24(5), 408-414.
223.	Zolfani, S. H., Zavadskas, E. K., & Turskis, Z. (2013). Design of products with both International and Local perspectives based on Yin-Yang balance theory and SWARA method. Economic research-Ekonomska istraživanja, 26(2), 153-166.
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於2025-08-22, 於網際網路公開,延後電子全文
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文延後至2025-08-22公開,延後電子全文

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信