系統識別號 | U0002-2206202101390400 |
---|---|
DOI | 10.6846/TKU.2021.00563 |
論文名稱(中文) | 行動購物APP介面設計之有效性對消費者使用意願影響之研究:以蝦皮購物與PChome為例 |
論文名稱(英文) | Exploring the Impact of the Effectiveness of Mobile Shopping Application Interface Design on Consumer’s Intentions to Use: the Cases of Shopee and PChome |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 企業管理學系碩士班 |
系所名稱(英文) | Department of Business Administration |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 109 |
學期 | 2 |
出版年 | 110 |
研究生(中文) | 蔡宗喜 |
研究生(英文) | Zong-Xi Cai |
學號 | 608610456 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2021-06-03 |
論文頁數 | 69頁 |
口試委員 |
指導教授
-
王居卿(chuching@mail.tku.edu.tw)
共同指導教授 - 李芸蕙(yh@mail.tku.edu.tw) 委員 - 余坤東(k.d.yu9128@gmail.com) 委員 - 楊立人(iry@mail.tku.edu.tw) 委員 - 王居卿(chuching@mail.tku.edu.tw) |
關鍵字(中) |
行動購物 知覺易用性 知覺有用性 經驗開放性 使用意願 持續使用意願 |
關鍵字(英) |
Mobile shopping Perceived Ease of Use Perceived Usefulness Openness to Experience Intention to Use Continuous Intention to Use |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近幾年在臺灣行動購物App掀起熱潮,在行動購物上購買商品讓消費者增添許多便利性,但在其發展如此成熟化之下,如何吸引消費者使用自家行動購物App,成為各電商困擾的問題之一。據此,本研究將聚焦於行動購物App介面,以介面上的知覺易用性與知覺有用性,來探討對消費者的行為意圖影響,並加入消費者人格特質之經驗開放性作為干擾變項,藉由干擾變項深入探討消費者的經驗開放性對於行動購物APP介面設計上的有效性是否會影響消費者的行為意圖。 本研究以蝦皮購物與PChome App為例,採用網路線上問卷,調查對象為臺灣地區有使用過(或正在使用)網路的消費者,問卷發放期間為2021年3月15日至4月16日。本研究共回收有效問卷335份,針對這些有效問卷所蒐集到的資料,利用SPSS軟體進行了敘述性統計分析、信效度分析、相關分析、T檢定與變異數分析及迴歸分析。 本研究經統計檢定結果,有下列重要發現: 1.蝦皮購物與PChome App介面之知覺易用性對消費者的行為意圖有顯著正向影響。 2.蝦皮購物與PChome App介面之知覺有用性對消費者的行為意圖有顯著正向影響。 3.人格特質之經驗開放性對蝦皮購物與PChome App的行為意圖有顯著正向影響。 4.人格特質之經驗開放性在蝦皮購物與PChome App介面上的知覺易用性、知覺有用性及行為意圖間的關係具有部分顯著干擾效果。 5.已使用過蝦皮購物與PChome App的消費者在行為意圖上較有持續使用之意願。 |
英文摘要 |
In recent years, mobile shopping App have become a sensation in Taiwan. Purchasing goods on mobile Apps has brought much convenience to consumers. With such mature development, how to attract consumers to use their mobile shopping App has become a problem for all e-commerce companies. This research will focus on the mobile shopping App interface. By adapting perceived ease of use and perceived usefulness to explore the impact on consumers' behavioral intentions and add consumer’s openness of experience as a moderating variable. Through the moderating variable, the study will deeply explore whether consumer's openness to experience for the effectiveness of the mobile shopping App interface design will affect their behavioral intentions. This study uses Shopee Shop and PChome App as an example and takes consumers who have used (or are using) these two Apps as the research object. By distributing online questionnaires from March 15 to April 16, 2021, a total of 335 valid questionnaires were collected in this study. Based on the data collected by these valid questionnaires, SPSS was used to carry out descriptive statistics, reliability and validity analysis, correlation analysis, t-test, analysis of variance and regression analysis. The empirical study indicated that: 1.The perceived ease of use of the two Apps interface has a positive and significant impact on consumers’ behavioral intentions. 2.The perceived usefulness of the two Apps interface has a positive and significant impact on consumers’ behavioral intentions. 3.The openness of experience has a positive and significant impact on consumers’ behavioral intentions of the two Apps. 4.The openness of experience partially moderated effects between the perceived ease of use and usefulness of the two Apps interface and consumers’ behavioral intentions. 5.Consumers who have used the two Apps are more willing to continue using them in terms of behavioral intentions. |
第三語言摘要 | |
論文目次 |
目錄 I 表次 III 圖次 IV 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究流程 5 第二章 文獻探討 6 第一節 行動購物應用程式之模式及發展現狀 6 第二節 研究變項之內涵與衡量 8 第三節 個案行動應用程式介面介紹-蝦皮購物與PChome 17 第四節 各研究變項之關係 19 第三章 研究方法 23 第一節 研究架構 23 第二節 研究假說 24 第三節 變項之操作性定義與衡量 24 第四節 問卷調查對象及抽樣方式 27 第五節 資料分析方法 28 第四章 資料分析與結果 29 第一節 敘述性統計分析 29 第二節 信度與效度分析 32 第三節 相關分析 34 第四節 T檢定與變異數分析 35 第五節 迴歸分析 40 第六節 人格特質之經驗開放性之干擾效果驗證 42 第七節 假說驗證結果彙整與討論 46 第五章 結論與建議 49 第一節 結論 49 第二節 管理意涵 51 第三節 研究限制 52 第四節 建議 53 參考文獻 55 一、中文部分 55 二、英文部分 57 附錄:問卷 65 表2-1 ISO 9241第十二部分中七個屬性之描述 8 表2-2 知覺易用性之相關研究彙整表 10 表2-3 知覺有用性之相關研究彙整表 12 表2-4 經驗開放性之相關研究彙整表 14 表2-5 行為意圖之相關研究彙整表 16 表3-1 本研究之假說內容 24 表3-2 知覺易用性及知覺有用性之衡量問項 25 表3-3 經驗開放性之衡量問項 26 表3-4 行為意圖之衡量問項 27 表4-1 受訪者之基本資料次數統計表 29 表4-2 各變項之敘述統計分析 31 表4-3 各變項之信度分析 32 表4-4 各變項之效度分析 33 表4-5 蝦皮購物各變項之相關分析 34 表4-6 PChome各變項之相關分析 34 表4-7 性別在各變項之獨立樣本t檢定 35 表4-8 年齡在各變項之單因子變異數分析 36 表4-9 工作年資在各變項之單因子變異數分析 37 表4-10 工作年資在變項之事後多重比較 37 表4-11 學歷在各變項之單因子變異數分析 38 表4-12 學歷在變項之事後多重比較 38 表4-13 職業在各變項之單因子變異數分析 39 表4-14 各變項對使用意願之迴歸分析 41 表4-15 各變項對持續使用意願之迴歸分析 42 表4-16 知覺易用性、知覺有用性與人格特質對使用意願之階層迴歸分析 43 表4-17 知覺易用性、知覺有用性與人格特質對持續使用意願之階層迴歸分析 44 表4-18 本研究假說驗證彙整表 46 圖1-1 研究流程圖 5 圖2-1 蝦皮購物App介面描述 17 圖2-2 PChome App介面描述 18 圖3-1 研究架構圖 23 圖4-1 蝦皮購物之雙向互動圖 45 |
參考文獻 |
王存國、戴基峰、王凱(2004)。影響消費者接受線上購物傾向之探討-結合慎思行動理論以及交易成本理論。資訊管理學報,11(1),113-137。 何苔麗、徐慧霞、章家誠(2012)。手機應用程式服務使用態度及再購意願研究-以蘋果公司的 App Store 為例。Why Do People Use Application Service-The Case of Apple's App Store, 166-186。 吳伊涵(2018)。以商業模式與價值主張法研究蝦皮購物關鍵成功因素。臺灣大學商學研究所碩士論文。 林秀奉(2015)。網路促銷活動對消費者購買意願影響之研究。逢甲大學電子商務碩士在職專班碩士論文。 邱鈺娟(2007)。不同人格特質之網路購物消費者在信任、滿意度及忠誠度間之關聯性研究。長榮大學資訊管理學系研究所碩士論文。 邱顯貴(2008)。影響使用即時通訊軟體行為意圖之研究。資訊科技與社會學報,8(1),1-19。 張明杰、羅玉婷(2020)。行動支付使用意願之研究-以修正後的科技接受模型觀點。嶺東學報,46,51-84。 莊翊彬(2020)。應用計畫行為理論探討體驗行銷對知覺價值之影響-以蝦皮購物為例。國立暨南國際大學國際企業學系碩士論文。 陳柔安、顧勳震、陳怡絜(2019)。購物App使用介面影響使用者持續使用意圖之研究-以PChome、蝦皮購物為例。圖文傳播藝術學報,168-181。 陳廣山(1999)。人格特質與人口統計變數對網路購物知覺風險、降低知覺風險策略之影響。國立交通大學經營管理研究所碩士論文。 曾娟娟、洪偉能(2019)。科技導入與服務品質對顧客滿意度及顧客忠誠度之影響-以行動購物 APP 為例。全球商業經營管理學報,(11),109-120。 曾淑美、高芝婷(2017)。行動購物持續使用意圖之期望確認模式。Journal of Information, Technology and Society, 18-35。 黃宇晨(2018)。蝦皮購物賣家使用經驗之負向評論分析。中華大學科技管理學系碩士論文。 黃家齊、許雅婷(2006)。團隊成員人格特質對知識分享及創新績效之影響-個人與團隊層次的分析。管理學報,23(2),149-170。 楊倩蓉(2016)。蝦皮拍賣,「聊」出行動購物No.1。 2020年11月30日,取自https://www.cheers.com.tw/article/article.action?id=5077866 廖珮妏、謝俊義(2012)。知覺易用性、知覺有用性與社會影響的交互作用對網路學習效率之研究。數位學習科技期刊,4(2),39-61。 劉嘉雯、郭岱姿、李昭慧、林均棻(2019)。抖音短影音平臺Tik Tok之知覺有用性與知覺易用性對消費者購買意願的影響。管理資訊計算,8(2),151-160。 鄭桂玫、徐聖翔(2013)。消費者運動用品線上商店購物使用意向之研究。體育運動與Amos統計應用期刊,2(1),1-12。 盧智強、邱天佑、林子鈞(2013)。影響使用網路訂購系統因素之研究-以Yahoo!購物網為例。顧客滿意學刊,9(2),189-214。 鍾君宇、蔡顯童、林國清(2019)。個人社交媒體支持意願之探討。資訊管理學報,26(1),25-69。 Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies?. Decision Sciences, 30(2), 361-391. Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action Control , 11-39. Ajzen, I. (1988). Attitudes, Personality, and Behavior. Homewood, IL, US. Dorsey Press. Ajzen, I., & Driver, B. L. (1991). Prediction of leisure participation from behavioral, normative, and control beliefs: An Application of the theory of planned behavior. Leisure Sciences, 13(3), 185-204. Alrafi, A. (2007). The technology acceptance model: a critical analysis with reference to the managerial use of information and communication technology (ICT), Doctoral dissertation, Leeds Metropolitan University. Ashley, C., & Tuten, T. (2015). Creative strategies in social media marketing: an exploratory study of branded social content and consumer engagement. Psychology & Marketing, 32(1), 15-27. Barkhi, R., & Wallace, L. (2007). The impact of personality type on purchasing decisions in virtual stores. Information Technology and Management, 8(4), 313-330. Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International Journal of Information Management, 22(2), 91-108. Berkovsky, S., Freyne, J., & Oinas-Kukkonen, H. (Eds.). (2012). Influencing individually: fusing personalization and persuasion, ACM Transactions on Interactive Intelligent Systems, 1(2), 1-8. Bettman, J. R. (1979). Information Processing Theory of Consumer Choice. Addison-Wesley Pub. Co.. Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201-214. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 351-370. Bina, M., & Giaglis, G. M. (2007). Perceived Value and Usage Patterns of Mobile Data Services: A Cross‐Cultural Study. Electronic Markets, 17(4), 241-252. Bosnjak, M., Galesic, M., & Tuten, T. (2007). Personality determinants of online shopping: Explaining online purchase intentions using a hierarchical Approach. Journal of Business Research, 60(6), 597-605. Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of Business Research, 58(5), 553-558. Butt, S., & Phillips, J. G. (2008). Personality and self reported mobile phone use. Computers in Human Behavior, 24(2), 346-360. Calisir, F., Gumussoy, C. A., & Bayram, A. (2009). Predicting the behavioral intention to use enterprise resource planning systems. Management Research News. 32(7). 597-613. Calvo-Porral, C., & Lévy-Mangin, J. P. (2015). Switching behavior and customer satisfaction in mobile services: Analyzing virtual and traditional operators. Computers in Human Behavior, 49, 532-540. Casaló, L., Flavián, C., & Guinalíu, M. (2008). The role of perceived usability, reputation, satisfaction and consumer familiarity on the website loyalty formation process. Computers in Human behavior, 24(2), 325-345. Chau, P. Y., & Hu, P. J. H. (2001). Information technology acceptance by individual professionals: A model comparison Approach. Decision Sciences, 32(4), 699-719. Chen, S. H., & Lee, K. P. (2008). The role of personality traits and perceived values in persuasion: An elaboration likelihood model perspective on online shopping. Social Behavior and Personality: An International Journal, 36(10), 1379-1399. Chen, Y. H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21-36. Chen, Y. H., Hsu, I. C., & Lin, C. C. (2010). Website attributes that increase consumer purchase intention: A conjoint analysis. Journal of Business Research, 63(9-10), 1007-1014. Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. Journal of Retailing, 77, 511–535. Chiu, Y. B., Lin, C. P., & Tang, L. L. (2005). Gender differs: assessing a model of online purchase intentions in e‐tail service. International Journal of Service Industry Management, 16 (5), 416-435. Chorley, M. J., Whitaker, R. M., & Allen, S. M. (2015). Personality and location-based social networks. Computers in Human Behavior, 46, 45-56. Corbitt, B. J., Thanasankit, T., & Yi, H. (2003). Trust and e-commerce: a study of consumer perceptions. Electronic Commerce Research and Applications, 2(3), 203-215. Dai, H., & Palvi, P. C. (2009). Mobile commerce adoption in China and the United States: a cross-cultural study. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 40(4), 43-61. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. Dholakia, R. R., & Zhao, M. (2010). Effects of online store attributes on customer satisfaction and repurchase intentions. International Journal of Retail & Distribution Management, 38(7), 482-496. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. Fishbein, M., & Manfredo, M. J. (1992). A theory of behavior change. Influencing Human Behavior, 24(1), 29-50. Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14. Forbes (2017). Why Many Online Shopping Sites Are Becoming Mobile Shopping Apps. Retrieved December 12, 2020, from https://www.forbes.com/sites/quora/2017/12/19/why-many-online-shopping-sites-are-becoming-mobile-shopping-Apps/#5f29e62f62c2 George, J. M., & Zhou, J. (2001). When openness to experience and conscientiousness are related to creative behavior: an interactional Approach. Journal of Applied Psychology, 86(3), 513. Gohary, A., & Hanzaee, K. H. (2014). Personality traits as predictors of shopping motivations and behaviors: a canonical correlation analysis. Arab Economic and Business Journal, 9(2), 166-174. Guritno, S., & Siringoringo, H. (2013). Perceived usefulness, ease of use, and attitude towards online shopping usefulness towards online airlines ticket purchase. Procedia-Social and Behavioral Sciences, 81, 212-216. Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. Hainla, L. (2017). 21 Social Media Marketing Statistics You Need to Know in 2017. Retrieved October 25, 2020, from https://www.dreamgrow.com/21-social-media-marketing-statistics/ Hernandez, B., Jimenez, J., & Jose Martin, M. (2009). The impact of self-efficacy, ease of use and usefulness on e-purchasing: An analysis of experienced e-shoppers. Interacting With Computers, 21(1-2), 146-156. Hill, T., Smith, N. D., & Mann, M. F. (1987). Role of efficacy expectations in predicting the decision to use advanced technologies: A case of computers. Journal of Applied Psychology, 72(2), 307-318. Hong, W., Wong, W., Thong, J., and Tam, K. (2002), Determinants of User Acceptance of Digital Libraries: An Empirical Examination of Individual Differences and System Characteristics, Journal of Management Information Systems, 18(3), 97-124. Horton, R. P., Buck, T., Waterson, P. E., & Clegg, C. W. (2001). Explaining intranet use with the technology acceptance model. Journal of Information Technology, 16(4), 237-249. Hostler, R. E., Yoon, V. Y., & Guimaraes, T. (2012). Recommendation agent impact on consumer online shopping: The Movie Magic case study. Expert Systems with Applications, 39(3), 2989-2999. Huang, J. H., & Yang, Y. C. (2010). The relationship between personality traits and online shopping motivations. Social Behavior and Personality: An International Journal, 38(5), 673-679. Hung, M. C., Hwang, H. G., & Hsieh, T. C. (2007). An exploratory study on the continuance of mobile commerce: an extended expectation-confirmation model of information system use. International Journal of Mobile Communications, 5(4), 409-422. Irani, Z., Bukhari, S. M. F., Ghoneim, A., Dennis, C., & Jamjoom, B. (2013). The antecedents of travellers’e-satisfaction and intention to buy airline tickets online. Journal of Enterprise Information Management, 26 (6), 624-641. Jarvenpaa, S.L. (1989), The effect of task demands and graphical format on information processing strategies, Management Science, 285-303. Jung, W. (2017). The Effect of Representational UI Design Quality of Mobile Shopping Applications on Users’ Intention to Shop. Procedia Computer Science, 121, 166-169. Junglas, I. A., & Watson, R. T. (2008). Location-based services. Communications of the ACM, 51(3), 65-69. Khalifa, M., & Shen, K. N. (2008). Explaining the adoption of transactional B2C mobile commerce. Journal of Enterprise Information Management, 2(2), 110-124. Khare, A., Khare, A., & Singh, S. (2010). Role of consumer personality in determining preference for online banking in India. Journal of Database Marketing & Customer Strategy Management, 17(3-4), 174-187. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. Kwong, S. W., & Park, J. (2008). Digital music services: consumer intention and adoption. The Service Industries Journal, 28(10), 1463-1481. Lamberton, C., & Stephen, A. T. (2016). A thematic exploration of digital, social media, and mobile marketing: Research evolution from 2000 to 2015 and an agenda for future inquiry. Journal of Marketing, 80(6), 146-172. Lee, K. C., & Kwon, S. (2008). Online shopping recommendation mechanism and its influence on consumer decisions and behaviors: A causal map Approach. Expert Systems with Applications, 35(4), 1567-1574. Liao, C., & Lee, C. (2009). An empirical study of employee job involvement and personality traits: The case of Taiwan. International Journal of Economics and Management, 3(1), 22-36. Liao, Z., & Shi, X. (2009). Consumer perceptions of internet‐based e‐retailing: an empirical research in Hong Kong. Journal of Services Marketing, 23(1), 24-30. Lim, K. H., Sia, C. L., Lee, M. K., & Benbasat, I. (2006). Do I trust you online, and if so, will I buy? An empirical study of two trust-building strategies. Journal of Management Information Systems, 23(2), 233-266. Lin, H.-F. (2007). Predicting consumer intentions to shop online : An empirical test of competing theories. Electronic Commerce Research and Applications, 6, 433–442. Lin, J. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. Journal of Computer Information Systems, 44 (4), 98-108. Lu, J. (2014). Are personal innovativeness and social influence critical to continue with mobile commerce?. Internet Research, 24 (2), 134-159. Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873-891. Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance model: the influence of perceived user resources. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 32(3), 86-112. Matzler, K., Würtele, A., & Renzl, B. (2006). Dimensions of price satisfaction: a study in the retail banking industry. International Journal of Bank Marketing. McCrae, R. R., & John, O. P. (1992). An introduction to the five‐factor model and its Applications. Journal of Personality, 60(2), 175-215. Miladinovic, J., & Hong, X. (2016). A study on factors affecting the behavioral intention to use mobile shopping fashion Apps in Sweden(Unpublished Bachelor thesis). Jönköping International Business School, Sweden. Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114. Mohamed, N., Hussein, R., Zamzuri, N. H. A., & Haghshenas, H. (2014). Insights into individual's online shopping continuance intention. Industrial Management & Data Systems, 114(9), 1453-1476. Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230. Mosteller, J., Donthu, N., & Eroglu, S. (2014). The fluent online shopping experience. Journal of Business Research, 67(11), 2486-2493. Neti, S. (2011). Social media and its role in marketing. International Journal of Enterprise Computing and Business Systems, 1(2), 1-15. Ngai, E. W., Tao, S. S., & Moon, K. K. (2015). Social media research: Theories, constructs, and conceptual frameworks. International Journal of Information Management, 35(1), 33-44. Oghazi, P., Karlsson, S., Hellström, D., Mostaghel, R., & Sattari, S. (2020). From Mars to Venus: Alteration of trust and reputation in online shopping. Journal of Innovation & Knowledge, from https://doi.org/10.1016/j.jik.2020.06.002 Okumus, B., & Bilgihan, A. (2014). Proposing a model to test smartphone users' intention to use smart Applications when ordering food in restaurants. Journal of Hospitality and Tourism Technology, 5(1), 31-49. Oppermann, R. (2002). User-interface design. In Handbook on Information Technologies for Education and Training , 233-248. Pantano, E., & Priporas, C. V. (2016). The effect of mobile retailing on consumers' purchasing experiences: A dynamic perspective. Computers in Human Behavior, 61, 548-555. PAppas, I. O., Kourouthanassis, P. E., Giannakos, M. N., & Chrissikopoulos, V. (2014). Shiny hAppy people buying: the role of emotions on personalized e-shopping. Electronic Markets, 24(3), 193-206. Park, D. H., & Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399-410. Ramayah, T., Ma’ruf, J. J., Jantan, M., & Osman, M. (2002). Technology Acceptance Model: is it Applicable to users and non users of internet banking. The Proceedings of The International Seminar, Indonesia-Malaysia, The Role of Harmonization of Economics and Business Discipline in Global Competitiveness, 14-15. Rauschnabel, P. A., Brem, A., & Ivens, B. S. (2015). Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Computers in Human Behavior, 49, 635-647. Rosen, P. A., & Kluemper, D. H. (2008). The impact of the big five personality traits on the acceptance of social networking website. AMCIS 2008 Proceedings, 274. Roy, M. C., Dewit, O., & Aubert, A. B. (2001). The impact of interface usability on trust in web relations. Internet Research, 11(5), 358-398. Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on line learning: an extension of the technology acceptance model. Information & Management , 42 (2), 317 327. Schmitt, D. P., Allik, J., McCrae, R. R., & Benet-Martínez, V. (2007). The geographic distribution of Big Five personality traits: Patterns and profiles of human self-description across 56 nations. Journal of Cross-Cultural Psychology, 38(2), 173-212. Seckler, V. (2000). Survey says Web Apparel buys doubled. Women Wear Daily, 12, 2. Shim, S., & Drake, M. F. (1990). Consumer intention to utilize electronic shopping. The Fishbein behavioral intention model. Journal of Direct Marketing, 4(3), 22-33. Siamagka, N. T., Christodoulides, G., Michaelidou, N., & Valvi, A. (2015). Determinants of social media adoption by B2B organizations. Industrial Marketing Management, 51, 89-99. Son, J., Sadachar, A., Manchiraju, S., Fiore, A.M., and Niehm, L.S.(2012). Consumer adoption of online collaborative customer co-design. J. Res. Interact. Mark, 6, 180–197 Soto, C. J., & John, O. P. (2009). Ten facet scales for the Big Five Inventory: Convergence with NEO PI-R facets, self-peer agreement, and discriminant validity. Journal of Research in Personality, 43(1), 84-90. Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management science, 42(1), 85-92. Tsao, W. C., & Chang, H. R. (2010). Exploring the impact of personality traits on online shopping behavior. African Journal of Business Management, 4(9), 1800-1812. Turkyilmaz, C. A., Erdem, S., & Uslu, A. (2015). The effects of personality traits and website quality on online impulse buying. Procedia-Social and Behavioral Sciences, 175, 98-105. Varshney, U., & Vetter, R. (2002). Mobile commerce: framework, Applications and networking support. Mobile Networks and Applications, 7(3), 185-198. Venkatesh, V. (1999). Creation of favorable user perceptions: Exploring the role of intrinsic motivation, MIS Quarterly, (23) 2, 239. Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. Walczuch, R., & Lundgren, H. (2004). Psychological antecedents of institution-based consumer trust in e-retailing. Information & Management, 42(1), 159-177. Wang, C. C., & Yang, H. W. (2008). Passion for online shopping: The influence of personality and compulsive buying. Social Behavior and Personality: An International Journal, 36(5), 693-706. Wei, T. T., Marthandan, G., Chong, A. Y. L., Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m‐commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3). Wen, C., Prybutok, V. R., & Xu, C. (2011). An Integrated Model for Customer Online Repurchase Intention. Journal of Computer Information Systems, 52(1), 14–23. Wikipedia (2020). User Interface Design. Retrieved December 11, 2020, from https://en.wikipedia.org/wiki/User_interface_design Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719-729. Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2-22. Zhang, L., Zhu, J., & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior, 28(5), 1902-1911. Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model-A critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信