系統識別號 | U0002-2202202423474000 |
---|---|
DOI | 10.6846/tku202400105 |
論文名稱(中文) | 氣候變遷下應用乾旱指標與自組特徵映射網路評估曾文溪流域的農業水資源 |
論文名稱(英文) | Evaluating Agricultural Water Resources in the Zengwen River Basin under Climate Change Using Drought Indices and Self-Organizing Map |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 水資源及環境工程學系碩士班 |
系所名稱(英文) | Department of Water Resources and Environmental Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 1 |
出版年 | 113 |
研究生(中文) | 林廷翰 |
研究生(英文) | Ting-Han Lin |
學號 | 611480129 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-01-15 |
論文頁數 | 119頁 |
口試委員 |
口試委員
-
張斐章(changfj@ntu.edu.tw)
口試委員 - 黃文政 指導教授 - 張麗秋(changlc@mail.tku.edu.tw) |
關鍵字(中) |
農業乾旱 乾旱指標 類神經網路 氣候變遷 |
關鍵字(英) |
Agricultural Drought Drought Index Artificial Neural Networks Climate Change |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
近年來,氣候變遷日益嚴重,導致頻發極端水文事件。根據中央氣象局的資料,臺灣的年平均氣溫自1911年至2020年間上升了約1.6攝氏度,這一趨勢在過去三十年持續加劇。基於聯合國政府間氣候變遷專門委員會(IPCC)的第六次評估報告(AR6),科技部臺灣氣候變遷推估與資訊平台(TCCIP)預測,臺灣將在本世紀末經歷一系列極端事件,包括濕季降雨增加和乾季降雨減少,這將對本國的農業造成重大影響。 為了應對這些氣候相關變化帶來的挑戰,本研究探討農業乾旱指標理論,分析重要作物歷史乾旱事件之趨勢,評估重要作物的產區在氣候變遷下之乾旱雨水情趨勢,探究農業乾旱指標與農產業之應用。未能評估農業乾旱及其等級,本研究整理常見之乾旱指標,包括:標準化降雨指標(SPI)、標準化降水爭發散指標(SPEI)、標準化流量指標(SSI)、河川乾旱指標(SDI)、標準化地下水指標(SGI)、地表供水指標(SWSI),分析曾文溪流域各乾旱指標所呈現之乾旱趨勢,與歷史乾旱事件或水稻(產量或耕作面積)之關係,病例用水文因子推估水稻需水量,提供各生育期之灌溉水量,以探討後續各乾旱指標尺度反映不同乾旱等級之訂定。 本研究以曾文溪流域作為研究區域,為呈現乾旱指標在時間與空間上之分布變化,將歷史資料與AR6氣候變遷情境之所分析之SPI與SPEI網格數值繪製於曾文溪流域,再以自主特徵映射網路(SOM)進行拓樸分類,探討曾文溪流域灌區豐枯變化情形與對重要作物之影響。根據AR6資料與歷史資料結果顯示,各區域乾旱程度表現上時距6個月相較於時距3個月更為顯著,且AR6乾旱指標數值整體有上升現象,隨著溫室氣體排放增加,發生頻率隨之提升,未來發生極端乾旱與豐水的情形有增加趨勢,應用SOM模式分類乾旱指標數值,有效區分乾旱程度並取得乾旱發生時間,未來將作物需水量、缺水耐受性與乾旱指標結合SOM模式,根據水稻各生長階段之推估需水量得知,皆有降低灌溉量,最大為225毫米,說明以實際降雨量與推估的灌溉量,能有效運用農業水資源,可提供農民進行實際應用。 |
英文摘要 |
In recent years, climate change has been increasingly severe, leading to frequent occurrences of extreme hydrological events. According to data from the Central Weather Administration, Taiwan's annual average temperature has risen by approximately 1.6 degrees Celsius from 1911 to 2020, a trend that has intensified over the past thirty years. Based on the Intergovernmental Panel on Climate Change's Sixth Assessment Report (AR6) and forecasts from Taiwan's Climate Change Projection and Information Platform (TCCIP), Taiwan is projected to experience a series of extreme events by the end of this century. These events include increased rainfall during wet seasons and decreased rainfall during dry seasons, significantly impacting the country's agriculture. In response to the challenges posed by climate-related changes, this study explores agricultural drought index theories. It analyzes the trends of significant historical drought events for key crops, assesses the trends of drought and precipitation in major crop-producing regions under climate change, and investigates the application of agricultural drought indices in the agricultural industry. Failing to evaluate agricultural drought and its severity, this study compiles common drought indices, including the Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), Streamflow Drought Index (SDI), Standardized Groundwater Index (SGI), and Surface Water Supply Index (SWSI). It analyzes the drought trends presented by each drought index in the Zengwen River Basin, along with their relationship to historical drought events or rice (yield or cultivation area). Hydrological factors are utilized to estimate rice water requirements and provide irrigation amounts during different growth stages to investigate the subsequent establishment of different drought index scales reflecting various drought severity levels. This study focuses on the Zengwen River Basin to illustrate the temporal and spatial variations of drought indices. The historical data and SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) values derived from AR6 climate change scenarios were mapped within the Zengwen River Basin. Subsequently, a Self-Organizing Map (SOM) was employed for topological classification to investigate the variations in water abundance within the irrigation area and their impact on crucial crops. Results derived from AR6 data and historical records indicate that the severity of drought in different regions is more pronounced over a six-month period compared to a three-month duration. Moreover, there is an overall increase in AR6 drought index values, which correlates with the rise in greenhouse gas emissions, thereby escalating the frequency of extreme droughts and periods of excess water. By utilizing the SOM model to classify drought index values, it effectively discerns drought severity and identifies the onset of droughts. Future endeavors will integrate crop water requirements and drought tolerance with the SOM model to understand water needs across various growth stages of rice. The findings revealed reduced irrigation amounts, with the maximum reduction being 225 millimeters. This underscores the effective utilization of agricultural water resources by aligning actual rainfall with estimated irrigation needs, providing practical implications for farmers. |
第三語言摘要 | |
論文目次 |
目 錄 謝誌 I 目 錄 VIII 圖目錄 X 表目錄 XIII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 1 1.3 研究架構 2 第二章 文獻回顧 4 2.1 氣候變遷相關研究 4 2.2 自組特徵映射網路應用於水文之研究 5 2.3 乾旱指標相關應用 5 2.4 農業水資源管理相關研究 7 第三章 理論概述 8 3.1 乾旱指標 8 3.2 類神經網路 16 第四章 研究案例 22 4.1 研究區域 22 4.2 資料蒐集 23 4.3相關參數推估 36 第五章 結果與討論 38 5.1 農業乾旱指標與水稻歷史乾旱事件趨勢分析 38 5.2 AR6氣候變遷情境下農業乾旱趨勢分析 56 5.3 評估氣候變遷下之乾旱與水情趨勢 64 5.4 水稻生育期灌溉量分析 79 第六章 結論與建議 86 6.1 結論 86 6.2 建議 87 參考文獻 88 附錄一、水稻收穫面積與生產量 93 附錄二、嘉南地區各式乾旱指標歷程圖 109 附錄三、曾文溪流域AR6情境SOM拓樸圖 112 附錄四、曾文溪流域AR6情境二次分類拓樸圖 116 圖目錄 圖1-1 研究流程圖 3 圖3-1 累積機率轉換圖 10 圖3-2 SPI常態機率分布圖 10 圖3-3 自組特徵映射網路架構圖 17 圖3-4 優勝神經元與鄰近神經元示意圖 19 圖3-5 SOM網路神經元的拓樸座標 20 圖3-6 SOM網路演算方法流程圖 21 圖4-1 曾文溪流域研究區域圖 22 圖4- 2 曾文溪流域測站位置圖 23 圖4-3 曾文溪流域各縣市稻作產量百分比 27 圖4-4 水稻一期作最小與最大面積分布 29 圖4-5 水稻二期作最小與最大面積分布 29 圖4-6 AR6於曾文溪流域和蓋範圍網格點 31 圖4-7 曾文水庫 SSP5-8.5年平均雨量變化圖 32 圖4-8 曾文水庫 SSP5-8.5年平均溫度變化圖 32 圖4-9 曾文水庫 SSP1-2.6年平均雨量變化圖 33 圖4-10 曾文水庫 SSP1-2.6年平均溫度變化圖 33 圖5-1 嘉義市、嘉義縣與臺南市SPI-6趨勢圖 40 圖5-2 嘉義市、嘉義縣與臺南市SPEI-6趨勢圖 40 圖5-3 嘉南平原SSI-6趨勢圖 41 圖5-4 嘉南平原SDI-6趨勢圖 41 圖5-5 嘉南平原SGI-6趨勢圖 42 圖5-6 嘉南平原SWSI趨勢圖 42 圖5-7 各縣市SPEI-3與產量趨勢圖 45 圖5-8 各縣市SPEI-6與產量趨勢圖 46 圖5-9 各縣市SPI-3與產量趨勢圖 47 圖5-10 各縣市SPI-6與產量趨勢圖 48 圖5-11 嘉南平原SSI-1與SWSI與產量趨勢圖 49 圖5-12 曾文溪流域SPI-3與SPEI-3空間分布圖 52 圖5-13 曾文溪流域SPI-6與SPEI-6空間分布圖 52 圖5-14 SPI-6 SOM 2×2拓樸圖 53 圖5-15 SPEI-6 SOM 2×2拓樸圖 53 圖5-16 SPI-6 SOM 2×2二次分類拓樸圖 54 圖5-17 曾文溪流域SSP1-2.6情境SPI-3、6圖 59 圖5-18 曾文溪流域SSP1-2.6情境SPEI-3、6圖 60 圖5-19 曾文溪流域SSP2-4.5情境SPI-3、6圖 60 圖5-20 曾文溪流域SSP2-4.5情境SPEI-3、6圖 60 圖5-21 曾文溪流域SSP3-7.0情境SPI-3、6圖 61 圖5-22 曾文溪流域SSP3-7.0情境SPEI-3、6圖 61 圖5-23 曾文溪流域SSP5-8.5情境SPI-3、6圖 61 圖5-24 曾文溪流域SSP5-8.5情境SPEI-3、6圖 62 圖5-25 曾文溪流域灌區示意與網格點分布 66 圖5-26 SSP1-2.6情境下SPI-6 SOM 2×2拓樸圖 67 圖5-27 SSP1-2.6情境下SPEI-6 SOM 2×2拓樸圖 67 圖5-28 SSP2-4.5情境下SPI-6 SOM 2×2拓樸圖 68 圖5-29 SSP2-4.5情境下SPEI-6 SOM 2×2拓樸圖 68 圖5-30 SSP3-7.0情境下SPI-6 SOM 2×2拓樸圖 69 圖5-31 SSP3-7.0情境下SPEI-6 SOM 2×2拓樸圖 69 圖5-32 SSP5-8.5情境下SPI-6 SOM 2×2拓樸圖 70 圖5-33 SSP5-8.5情境下SPEI-6 SOM 2×2拓樸圖 70 圖5-34 SPEI-6豐枯水期2×2資料比例(以SSP-1.26為例) 71 圖5-35 AR6情境下SPI3與SPI-6乾旱情勢分布比例 74 圖5-36 SSP1-2.6情境下SPI-3 SOM 2×2二次分類拓樸圖 75 圖5-37 SSP1-2.6情境下SPI-6 SOM 2×2二次分類拓樸圖 75 圖5-38 SSP2-4.5情境下SPI-3 SOM 2×2二次分類拓樸圖 76 圖5-39 SSP2-4.5情境下SPI-6 SOM 2×2二次分類拓樸圖 76 圖5-40 SSP3-7.0情境下SPI-3 SOM 2×2二次分類拓樸圖 77 圖5-41 SSP3-7.0情境下SPI-6 SOM 2×2二次分類拓樸圖 77 圖5-42 SSP5-8.5情境下SPI-3 SOM 2×2二次分類拓樸圖 78 圖5-43 SSP5-8.5情境下SPI-6 SOM 2×2二次分類拓樸圖 78 圖5-44 歷史與推估整地時間灌溉量比較歷程圖 85 表目錄 表3-1 SPI乾旱程度分級表 9 表3-2 SPEI乾旱程度對照表 11 表3-3 SWSI乾旱程度分級表 14 表4-1 曾文溪流域內水利署雨量站資訊 24 表4-2 曾文溪流域流量站測站資訊 24 表4-3 曾文溪流域水位站測站資訊 25 表4-4 曾文溪流域地下水位測站資訊 25 表4-5 水稻一期作與二期作種植面積 28 表4-6 AR-6日資料模式總表 34 表5-1 三縣市SPI與SPEI乾旱程度統計表 40 表5-2 嘉南平原SSI與SDI乾旱程度統計表 42 表5-3 嘉南地區一期作停灌年份與面積 44 表5-4 嘉南地區一期作停灌年前乾旱指標數值 44 表5-5 SOM二次分類各神經元分類時間 55 表5-6 歷史雨量與不同情境下之雨量分析 57 表5-7 SSP1-2.6 SPEI與SPI乾旱分析統計表 64 表5-8 SSP2-4.5情境下SPI與SPEI與乾旱程度對照表 64 表5-9 SSP3-7.0情境下SPI與SPEI與乾旱程度對照表 64 表5-10 SSP5-8.5情境下SPI與SPEI與乾旱程度對照表 64 表5-11 水田土壤特性 80 表5-12 水稻各生育期時間與深度 80 表5-13 1960至2021年水稻一期作各生育期推估水量與總雨量 81 表5-14 歷史與推估整地時間灌溉量比較 83 |
參考文獻 |
參考文獻 1. Bloomfield, J. P., Marchant, B. P. (2013). Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 17(12), 4769-4787. 2. Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., Melesse, A. M. (2019). Modeling Climate Change Impact on the Hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environmental Modeling & Assessment, 24(1), 95-107. 3. Bhunia, P., Das, P., Maiti, R. (2020). Meteorological drought study through SPI in three drought prone districts of West Bengal, India. Earth Systems and Environment, 4(1), 43-55. 4. Edwards, D. C., McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales (No. AFIT-97-051). Air force inst of tech wright-patterson afb oh. 5. Garen, D. C. (1993). Revised surface-water supply index for western United States. Journal of Water Resources Planning and Management, 119(4), 437-454. 6. Getahun, Y. S., Li, M. H., Chen, P. Y. (2020). Assessing Impact of Climate Change on Hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 Projections. Water, 12(5), 1308. 7. Guo, M., Yue, W., Wang, T., Zheng, N., Wu, L. (2021). Assessing the use of standardized groundwater index for quantifying groundwater drought over the conterminous US. Journal of Hydrology, 598, 126227. 8. Horton, R.E., “An approach toward a physical interpretation of infiltration capacity,” Soil Sci. Soc. Am. J., vol. 5, pp. 399-417, 1940. 9. Hangshing, L., Dabral, P. P. (2018). Multivariate frequency analysis of meteorological drought using copula. Water Resources Management, 32, 1741-1758. 10. Huang, A., Chang, F. J. (2021). Using a Self-Organizing Map to Explore Local Weather Features for Smart Urban Agriculture in Northern Taiwan. Water, 13(23), 3457. 11. Katipoğlu, O. M. (2023). Prediction of streamflow drought index for short-term hydrological drought in the semi-arid Yesilirmak Basin using Wavelet transform and artificial intelligence techniques. Sustainability, 15(2), 1109. 12. Lee, J. L., Huang, W. C. (2014). Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan. Water, 6(11), 3339-3361. 13. Lee, J. L., Huang, W. C. (2017). Climate change impact assessment on Zhoshui River water supply in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(3), 463-478. 14. Loikith, P. C., Lintner, B. R., Sweeney, A. (2017). Characterizing Large-Scale Meteorological Patterns and Associated Temperature and Precipitation Extremes over the Northwestern United States Using Self-Organizing Maps. Journal of Climate, 30(8), 2829-2847. 15. McKee, T.B., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology. California, pp. 179-183. 16. Modarres, R. (2007). Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment, 21(3), 223-233. 17. Markonis, Y., Strnad, F. (2020). Representation of European hydroclimatic patterns with self-organizing maps. The Holocene, 30(8), 1155-1162. 18. Nalbantis, I., Tsakiris, G. 2009. Assessment of hydrological drought revisited. Water resources management, 23, 881-897 19. Ohba, M., Sugimoto, S. (2019). Differences in climate change impacts between weather patterns: possible effects on spatial heterogeneous changes in future extreme rainfall. Climate Dynamics, 52(7), 4177-4191. 20. Okkan, U., Kirdemir, U. (2018). Investigation of the Behavior of an Agricultural-Operated Dam Reservoir Under RCP Scenarios of AR5-IPCC. Water Resources Management, 32(8), 2847-2866. 21. Roushangar, K., Alizadeh, F. (2018). A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique. Journal of Mountain Science, 15(7), 1481-1497. 22. Shafer, B. A., Dezman, L. E., 1982. Development of surface water supply index (SWSI) to assess the severity of drought condition in snowpack runoff areas. Proceeding of The Western Snow Conference 23. Saxton, K. E., Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 70(5), 1569-1578. 24. Shaw, S. B., Riha, S. J. (2011). Assessing temperature‐based PET equations under a changing climate in temperate, deciduous forests. Hydrological Processes, 25(9), 1466-1478. 25. Sharifi, H., Roozbahani, A., Hashemy Shahdany, S. M. (2021). Evaluating the performance of agricultural water distribution systems using FIS, ANN and ANFIS intelligent models. Water Resources Management, 35, 1797-1816. 26. Tsai, W. P., Chang, F. J., Chang, L. C., Herricks, E. E. (2015). AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands. Journal of Hydrology, 530, 634-644. 27. Tareke, K. A., Awoke, A. G. (2022). Comparing surface water supply index and streamflow drought index for hydrological drought analysis in Ethiopia. Heliyon, 8(12), e12000. 28. Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. 29. Zamir, F., Hanif, F., Naz, S. (2021). Extreme rainfall frequency analysis for Balakot, Pakistan, using Gumbel’s distribution. Arabian Journal of Geosciences, 14, 1-10. 30. 王尊麟,2019,以遊戲模擬方法探討乾旱時期水市場機制對水資源再分配之可行性-以桃園地區為例,國立臺灣大學生物環境系統工程學研究所碩士論文。 31. 林家玉、張素貞(2021)。水稻乾濕輪灌節水技術。苗栗區農業專訊,(93),1-3。 32. 陳豐文、劉正宇(2013),水收支平衡應用於水田灌溉用水消耗特性之評估,農業工程學報,第59 卷第1 期,第77-98 頁。 33. 張斐章、張麗秋,「類神經網路導論-原理與應用第二版」,滄海書局,2015。 34. 許心藜、葉信富(2018)。臺灣中部流域乾旱特徵之時空變化。作物、環境與生物資訊,15(1),1-14。 35. 翁叔平、楊承道(2013)。應用標準化降水蒸發散指數分析臺灣百年來乾溼變化的低頻特徵與遙地相關。大氣科學,41(2),139-170。 36. 黃文政,張修明,賈佳芸,朱泰毅,2016,氣候變遷對曾文-烏山頭供水地區水資源供需之衝擊評估,農業工程學報,第63卷第4期。 |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信