系統識別號 | U0002-2107201011251100 |
---|---|
DOI | 10.6846/TKU.2010.00644 |
論文名稱(中文) | Bacillus licheniformis TKU004生產生物界面活性劑之條件與特性分析 |
論文名稱(英文) | Production and characterization of biosurfactants from Bacillus licheniformis TKU004 |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 生命科學研究所碩士班 |
系所名稱(英文) | Graduate Institute of Life Sciences |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 98 |
學期 | 2 |
出版年 | 99 |
研究生(中文) | 蔣宗儒 |
研究生(英文) | Tsung-Ju Chiang |
學號 | 697180098 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2010-07-09 |
論文頁數 | 82頁 |
口試委員 |
指導教授
-
王三郎
委員 - 陳佑汲 委員 - 梁慈雯 |
關鍵字(中) |
Bacillus licheniformis Biosurfactant Surface tension |
關鍵字(英) |
Bacillus licheniformis Biosurfactant Surface tension |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本研究所篩選TKU004這株生物界面活性劑生產菌,經由16SrDNA序列比對及API試驗鑑定為Bacillus licheniformis 。 B. licheniformis TKU004 生產生物界面活性劑之較適培養條件為含有1%烏賊軟骨粉、0.1% K2HPO4 及0.05% MgSO4.7H2O之50 mL液態培養基 (pH 7)充填於250 mL 通氣錐形瓶並經滅菌20分鐘後,進行接菌並於37℃搖瓶(150 rpm)培養1天。所得醱酵上清液,經酸沈澱、乙酸乙酯萃取、甲醇萃取等步驟,進行生物界面活性劑之純化,其產量為0.551 g/L。TKU004生產之生物界面活性劑能降低水的表面張力至25.42 mN/m,乳化指數(E24)為70%,而且熱穩定性高,不會受高溫影響而失活。此生物界面活性劑之pH 安定性、鹽度安定性分別為pH>7、鹽濃度<2 %。 此外,2 mg/mL之生物界面活性劑對Fusarium oxysporun生長具有40%抑制效果。 |
英文摘要 |
The biosurfactant producing strain, Bacillus sp. TKU004, was identified further as Bacillus licheniformis by 16S rDNA gene sequencing and API(Analyitcal Profile Index)tests. The optimized culture condition for biosurfactant production was composed of 1% squid pen powder (SPP), 0.1% K2HPO4, 0.05% MgSO4.7H2O (pH 7),with autoclave treatment for 20 min, afterward, TKU004 was incubated in 50 mL of above liquid medium in an areation flask (250 mL) and kept shaking at 37℃ for one days. The biosurfactant was extracted from the culture supernatant by acid precipitation, extraction of ethyl acetate and methanol .The yields of biosurfactant was 0.551g/L. TKU004 biosurfactant could reduce surface tension of water from 72 to 29 dyne/cm.The emulsification index against machine oil was 80%.The biosurfactant had good thermal stability and was resistant to higher temperatures. The pH stability and salinity stability were pH>7 and salinity <2%, respectively. Besides, 2 mg/mL of the biosurfactant had 40% antifungal activity against mycelia growth of Fusarium oxysporun. |
第三語言摘要 | |
論文目次 |
目錄 頁次 授權書 簽名頁 誌謝 中文摘要..................................................Ⅰ 英文摘要..................................................Ⅲ 目錄......................................................Ⅴ 圖目錄....................................................Ⅹ 表目錄..................................................ⅩⅢ 第一章 緒論............................................1 第二章 文獻回顧........................................3 2.1 地衣芽孢桿菌..................................3 2.2 界面活性劑....................................4 2.3 界面活性劑種類........................................5 2.3.1陰離子界面活性劑.........................5 2.3.2 陽離子界面活性劑........................6 2.3.3 非離子界面活性劑........................6 2.3.4 兩性離子界面活性劑......................7 2.4 臨界微胞濃度..........................................7 2.5 生物界面活性劑................................9 2.6 生物界面活性劑種類............................9 2.7 幾丁質.......................................14 第三章 材料與方法........................................15 3.1 實驗菌株.....................................15 3.2 實驗材料.....................................15 3.3 實驗儀器.....................................16 3.4 生物界面活性劑生產俊之篩選...................17 3.5 表面張力測量.................................17 3.6 液滴擴散法...................................18 3.7 生物界面活性劑較適生產條件探討...............18 3.7.1碳/氮源濃度.............................18 3.7.2培養通氣量..............................19 3.7.3 培養溫度...............................19 3.7.4培養基pH值..............................19 3.7.5 較適培養條件...........................20 3.8生物界面活性劑之分離純化......................20 3.9生物界面活性劑之特性分析......................20 3.9.1熱穩定性................................20 3.9.2鹽安定性................................21 3.9.3 pH安定性...............................21 3.9.4 臨界微胞濃度...........................21 3.9.5 乳化指數...............................22 3.9.6 起泡能力...............................23 3.10 真菌抑制試驗................................23 第四章 結果與討論........................................24 4.1 界面活性劑生產菌株的篩選.....................24 4.2 Bacillus sp.TKU004種名之鑑定.................26 4.3 生物界面活性劑較適生產條件探討...............27 4.3.1碳/氮源濃度探討.........................27 4.3.2 通氣量培養探討.........................29 4.3.3 培養溫度探討...........................31 4.3.4 培養pH值探討...........................35 4.3.5較適培養條件探討結果....................38 4.4 生物界面活性劑製成研究.......................41 4.4.1 生物界面活性劑純化程序.................43 4.4.2 生物界面活性劑結構分析.................43 4.5 生物界面活性劑特性分析.......................49 4.5.1 熱穩定性...............................49 4.5.2 鹽度安定性分析.........................51 4.5.3 pH值安定性分析.........................53 4.5.4 臨界微胞濃度分析.......................55 4.5.5 乳化指數分析...........................57 4.5.6 起泡能力分析...........................64 4.6真菌抑制測試分析..............................67 4.7鹽類測試分析..................................72 第五章 結論..............................................74 第六章 參考文獻..........................................75 圖目錄 頁次 圖2.1 界活性劑的濃度與表面張力、界面張力 及溶解度變化之情形.................................8 圖2.2 鼠李醣脂化學結構...................................12 圖2.3 Sophorolipid化學結構...............................12 圖2.4 表面素化學結構.....................................13 圖2.5 Licheniformin化學結構..............................13 圖3.1 乳化指數計算之示意圖...............................22 圖4.1 API菌種鑑定........................................26 圖4.2 烏賊軟骨粉濃度對TKU004生物界面活性劑生產之影響.....28 圖4.3 醱酵體積對TKU004生物界面活性劑生產之影響...........30 圖4.4 一般錐形瓶中培養溫度對 TKU004生物界面活性劑生產影響.......................32 圖4.5 通氣錐形瓶中培養溫度對 TKU004生物界面活性劑生產影響.......................33 圖4.6 通氣量對TKU004生物界面活性劑生產之影響.............34 圖4.7 通氣錐形瓶中培養基PH值對 TKU004生物界面活性生產影響.........................36 圖4.8 一般錐形瓶中培養基PH值對 TKU004生物界面活性生產影響.........................37 圖4.9 TKU004生物界面活性劑分離程序.......................42 圖4.10 TKU004生產生物界面活性劑之純化分離流程圖..........44 圖4.11 TKU004生產生物界面活性劑之1H NMR..................45 圖4.12 TKU004生產生物界面活性劑之13C NMR.................46 圖4.13 TKU004生產生物界面活性劑之質量光譜................47 圖4.14 TKU004生產生物界面活性劑推測之化學結構............48 圖4.15 鹽度對於生物界面活性劑表面張力與乳化作用之影響....52 圖4.16 pH對於生物界面活性劑表面張力與乳化作用之影響......54 圖4.17 臨界微胞濃度值....................................56 圖4.18 TKU004生物界面活性劑與不同碳氫化合物乳化穩定度....59 圖4.19 TKU004生物界面活性劑與不同碳氫化合物 振盪乳化穩定度....................................62 圖4.20 不同界面活性劑與廢機油、n-hexane、 礦物油的乳化能力..................................63 圖4.21 起始泡沫高度與生物界面活性劑濃度示意圖............65 圖4.22 起始泡沫高度......................................66 圖4.23 TKU004生物界面活性劑抗真菌特性....................68 圖4.24 TKU004生物界面活性劑抑制F. oxysparun..............69 圖4.25 TKU004生物界面活性劑對F. oxysparun抑制活性........70 圖4.26 不同界面活性劑對F. oxysparun抑制活性..............71 圖4.27 添加鐵離子對微生物與生物界面活性劑的影響..........73 表目錄 頁次 表2.1 微生物及其生產的界面活性劑.........................11 表4.1 生物界面活應劑生產菌株.............................25 表4.2 TKU004生物界面活性劑之較適生產條件.................39 表4.3 B. licheniformis TKU004,B. subtilis 20B and B. licheniformis MS3 表面張力之比較................39 表4.4 醱酵液之pH值變化...................................40 表4.5 高壓滅菌對此生物界面活性劑一些性質之影響...........50 表4.6 微生物生產之生物界面活性劑特性比較.................60 |
參考文獻 |
1. 張豐志,2003。應用高分子手冊。五南出版社。 2. Agarwal, P., Sharma, D. K. 2009. Studies on the production of biosurfactant for the microbial enhanced oil recovery by using bacteria isolated from oil contaminated wet soil . Petroleum Science and Technology, 27, 1880-1893. 3. Amezcua-Vega, C., Poggi-Varaldo, H. M., Esparza-Garcıa, F., Rios-Leal, E., Rodriguez-Vazquez, R. 2007. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresource Technology, 98, 237-240. 4. Arutchelvi, J., Bhaduri, S., Uppara, P. V., Doble, M. 2009. Production and characerization of biosurfactant from Bacillus subtilis YB7. Journal of Applied Sciences, 9, 3151-3155. 5. Asaka, O., Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081-4085. 6. Banat, I. M. 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation. Fuel and Energy Abstracts, 36, 290-298. 7. Batrakova, S. G., Rodionovab, T. A., Esipovc, S. E., Polyakovc, N. B., Sheichenkod, V. I., Shekhovtsovae, N. V., Lukinb, S. M., Panikovb, N. S., Nikolaevb, Y. A. 2003. A novel lipopeptide, an inhibitor of bacterial adhesion,from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. Biochimica et Biophysica Acta, 1634, 107-115. 8. Becher, P. 1965. Emulsions:Theory and practice, second edition, Reinhold Publishing, New York. pp. 267-325. 9. Biria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., Sahebghadam Lotfi, A., Amoozegar, M. A. 2009. Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26, 871-878. 10. Chen, H. L., Juang, R. S. 2008. Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochemical Engineering Journal 38, 39-46. 11. Cooper, D. G., Paddock, D. A. 1984. Production of a biosurfactant from torulopsis bombicola. Applied and Environmental Microbiology, 47, 173–176. 12. Cooper, D. G., Goldenberg, B. G. 1987. Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53, 224-229. 13. Desai, J. D., Banat, I. M. 1997. Microbial production of surfactants andtheir commercial potential. Microbiology and Molecular Biology Reviews, 61, 47-64. 14. Dunning, H. N., Eakin, J. L., Walker, C. J. 1960. Using foaming agents to remove liquids from gas wells. Technical Toolboxes, Inc., Houston, Texas. 15. Fiechter, A. 1992. Biosurfactants: moving towards industrial application. Trends Biotechnol, 10, 208-217. 16. Ghojavand, H., Vahabzadeh, F., Roayaei, E., Shahraki, A. K. 2008. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). Journal of Colloid and Interface Science, 324, 172-176. 17. Goldstein, G., Flory, K. R., Browne, B. A., Majid, S., Ichida, J. M., Burtt Jr, E. H. 2004. Bacterial degradation of black and white feathers. The Auk, 121, 656-659. 18. Gutierrez, J. R., Erickson, L. E. 1977. Hydrocarbon uptake in hydrocarbon fermentations. Biotechnology and Bioengineering, 19, 1331-1349. 19. Haddad, N. I. A., Wang, J., Mu, B. 2008. Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. Journal of Microbiology and Biotechnology, 35, 1597-1604. 20. Holden, J. 1989. How to select hazardous waste treatment technologiesfor soils and sludges. Pollution Technology review 163 21. Horowitz, S., Gilbert, J. N., Griffin, W. M. 1990. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. Journal of Industrial Microbiology and Biotechnology, 6, 243-248. 22. Hultberg, M., Alsberg, T., Khalil, S., Alsanius, B. 2009. Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl, 9, 9261-9266. 23. Joshi, S., Bharucha, C., Desai, A. J. 2008. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresource Technology 99, 4603-4608. 24. Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H., Oh, H. M., Katsuragi, T., Tani, Y. 1997. Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84, 41-46. 25. Knorr, D. 1984. Use of chitinous polymer in food. Food Technology, 1, 85-89. 26. Kumar, M. N. V. R., 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27. 27. Lang, S., Wagner, F. 1987. Structure and properties of biosurfactants. Biosurfactants and Biotechnology. Marcel Dekker, New York, pp. 21–45. 28. Lee, S. C., Lee, S. J., Kim, S. H., Park, I. H., Lee, Y. S., Chung, S. Y., Choi, Y. L. 2008. Characterization of new biosurfactant produced by Klebsiella sp.Y6-1 isolated from waste soybean oil. Bioresource Technology, 99, 2288-2292. 29. Lin, S. C., Minton, M. A., Sharma, M. M., Georgiou, G. 1994. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2 . Applied and Environmental Microbiology, 60, 31-38. 30. Lin, S. C. 1996. Biosurfactant: recent advances. Journal of Chemical Technology and Biotechnology, 63, 109-120. 31. Lin, S. C., Lin, K. G., Lo, C. C., Lin, Y. M. 1998. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzyme and Microbial Technology, 23, 267–273. 32. Liu, X. Y., Yang, S. Z., Mu, B. Z. 2009. Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochemistry, 44, 1144-1151. 33. Mehdi, H., Giti, E. 2008. Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. International Biodeterioration and Biodegradation, 62, 170-178. 34. Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., Imanaka, T. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. Strain MIS38. Bacteriology, 175, 6459-6466. 35. Mulligan, C. N., Gibbs, B. F. 1993. Factors influencing the economics of biosurfactants. In: Kosaric, N. (Ed.), Biosurfactants, Production, Properties, Applications. Marcel Dekker, New York, pp. 329-371. 36. Mulligan, C. N. 2005. Environmental applications for biosurfactants. Environmental Pollution, 133, 183-198. 37. Muzzarelli, R. A. A. 1977. Enzymatic synthesis of chitin and chitosan. Occurrence of chitin. Pregamon Press, New York. pp. 5-44. 38. Portilla-Rivera, O., Torrado, A., Dominguez, J. M., Moldes, A. B. 2008. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 56, 8074-8080. 39. Ramachandran, N., Madharam, P. 1982. Metal binding property of chitosan from different sources. Plenum Press, Sapporo, Japan. 187-190. 40. Ramnani, P., Kumar, S. S., Gupta, R. 2005. Concomitant production and downstream processing of alkaline protease and biosurfactant from Bacillus licheniformis RG1: Bioformulation as detergent additive. Process Biochemistry, 40, 3352-3359. 41. Rosen, M. J. 1978. Surfactants and Interfacial Phenomena. Wiley-Interscience, New York, pp. 174. 42.Sarachat, T., Pornsunthorntawee, O., Chavadej, S., Rujiravanit, R. 2010. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation. Bioresource Technology, 101, 324-330. 43. Shcherbakova, V. A., Laurinavichius, K. S., Akimenko, V. K. 1999. Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere, 39, 1861-1870. 44. Sobrinho, H. B. S., Rufino. R. D., Luna, J. M., Salgueiro, A. A., Campos-Takaki, G. M., Leite, L. F. C., Sarubbo, L. A. 2008. Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43, 912-917. 45. Tavasi, R., Subramanyam Nambaru V. R. M., Jayalakshmi, S., Balasubramanian, T., Banat, I. M. 2009. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Marine Biotechnology, 11, 551-556. 46. Wang, S. L., Chio, S. H. 1998. Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme and Microbial Technology, 22, 629-633. 47. Wang, S. L., Yeh, P. Y., 2006a. Production of a surfactant- and solvent- stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry, 41, 1545-1552. 48. Wang, S. L., Kao, T. Y., Wang, C. L., Yen, Y. H., Chern, M. K., Chen, Y. H. 2006b. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology, 39, 724-31. 49. Wang, S. L., Wu, P. C., Liang, T. W. 2009. Utilization of squid pen for the efficient production of chitosanase and antioxidants through prolonged autoclave treatment. Carbohydrate Research, 344, 979–984. 50. Wei, Y. H., Chu, I. M. 2002. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnology Letters, 24, 479-482. 51. Wei, Y. H., Chou, C. L., Chang, J. S. 2005. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 27, 146-154. 52. Yakimov, M. M., Amro, M. M., Bock, M., Boseker, K., Fredrickson, H. L., Kessel, D. G., Timmis, K. N. 1997. The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. Journal of Petroleum Science and Engineering, 18, 147-160. 53. Yakimov, M. M., Kroger, A., Slepak, T. N., Giuliano, L., Timmis, K. N., Golyshin, P. N. 1998. A putative lichenysin A synthetase operon in Bacillus licheniformis initial characterization. Biochimica et Biophysica Acta, 1399, 141-153. 54. Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., He, B. 2009. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44, 302-308. 55. Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., McInerney, M. J. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56, 339-347. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信