§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2102202512360300
DOI 10.6846/tku202500105
論文名稱(中文) 沸石咪唑酯骨架ZIF-67用於二氧化碳吸附與衍生碳材料應用於電容去離子系統
論文名稱(英文) Zeolitic imidazolate framework ZIF-67 for carbon dioxide adsorption and derivatization of carbon materials for capacitive deionization (CDI) systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 1
出版年 114
研究生(中文) 汪庭伊
研究生(英文) Ting-Yi Wang
學號 612480276
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-01-09
論文頁數 61頁
口試委員 口試委員 - 蘇鎮芳
口試委員 - 林正嵐
指導教授 - 彭晴玉(cypeng@gms.tku.edu.tw)
關鍵字(中) 金屬有機框架(MOF)
沸石咪唑酯骨架(ZIF)
ZIF-67
CO2
電容去離子(CDI)
關鍵字(英) Metal Organic Frameworks
Zeolitic imidazolate framework
ZIF-67
CO2
capacitive deionization
第三語言關鍵字
學科別分類
中文摘要
電容去離子(Capacitive Deionization, CDI)技術利用對電極施加低電壓,使溶液中離子移動並電吸附於電極材料,具低耗能、無二次污染、易操作等優點。金屬有機框架 (Metal Organic Frameworks, MOF)是一種奈米多孔材料,它是由無數個有機配體及金屬離子構成一維、二維或三維的結構,根據合成方法及材料不同,可合成出不同潛力的MOF材料,賦予高度的可塑性和發展性。本研究採用MOF系列的沸石咪唑酯骨架(Zeolitic Imidazolate Frameworks, ZIF)中的ZIF-67,探討使用不同鈷源合成ZIF-67後吸附CO2之吸附能力;對吸附及未吸附CO2的ZIF-67進行高溫碳化轉變為衍生碳材料,應用於CDI系統之可行性。
使用硝酸鈷及乙酸鈷合成的ZIF-67皆擁有晶格面(011)、(002)、(112)、(022)、(013)、(222)、(114)、(233)、(134)、(044)、(334)、(244)、(235)等特徵峰值,經CO2吸附及900°C高溫碳化後,13個ZIF-67特徵峰皆消失,但生成了新的(111)、(200)、(220)特徵峰,表示900°C高溫碳化已將ZIF-67_NO3或ZIF-67_OAc轉為碳的衍生材料。
以SEM觀察ZIF-67_NO3、ZIF-67_OAc及其衍生碳材的表面型態,ZIF-67_NO3或ZIF-67_OAc的顆粒大小分別為550-2500 nm或700-2500 nm,經碳化過後ZIF-67_NO3_900c的顆粒大小下降至350-450 nm,顆粒稜角面變得光滑;ZIF-67_OAc_900c顆粒尺寸下降至200-250 nm,其外觀呈現褶皺且破碎狀。
使用GC-TCD檢測自行合成的ZIF-67_NO3及ZIF-67_OAc對CO2的24 hr吸附,ZIF-67_NO3吸附20%或30% CO2平均吸附率為26.79%及28.96%,平均吸附量為0.184 mmol/g和0.253 mmol/g;ZIF-67_OAc吸附20%或30% CO2平均吸附率為17.24%及15.64%,平均吸附量為0.118 mmol/g和0.140 mmol/g,可發現ZIF-67_NO3吸附20% CO2的平均CO2吸附量為ZIF-67_OAc之1.53倍,CO2濃度至30% CO2濃度時,ZIF-67_NO3的平均CO2吸附量增為1.81倍。
以比表面積和孔徑分析儀(Brunauer-Emmett-Teller, BET)分析ZIF-67_NO3及ZIF-67_OAc,比表面積分別為910.53 m2/g 和1137.90 m2/g且微孔比表面積佔比較高,後續直接碳化或先CO2吸附再碳化,可得ZIF-67_NO3_900c、ZIF-67_OAc_900c、ZIF-67_NO3_CO2 20%_900、ZIF-67_OAc_CO2 20%_900c、ZIF-67_NO3_CO2 30%_900c、ZIF-67_OAc_CO2 30%_900c,其比表面積分別為395.40、439.18、332.78、364.41、358.87、401.40 m2/g,碳化過後其比表面積和微孔體積皆大幅下降,然而中孔比例大幅提高,Vmeso/Vtot比例皆達90%以上,表示ZIF-67_NO3、ZIF-67_OAc經900°C高溫碳化後對於孔隙結構有著明顯的影響,尤其是有利於中孔的形成。
以循環伏安法分析(Cyclic Voltammetry, CV)分析經觀察可發現初掃描速率為1 mV/s時ZIF-67_NO3或ZIF-67_OAc的比電容值僅11.03 F/g和7.28 F/g,在經900°C高溫碳化後比電容值可提升至20.36 F/g和16.88 F/g,而先CO2吸附後再碳化的ZIF-67_NO3_20% CO2_900c或ZIF-67_OAc_30% CO2_900c其比電容值則提升到34.34 F/g和33.36 F/g,表示ZIF-67在經CO2吸附活化並碳化後,有助於提升材料的電化學性能。
將ZIF-67_NO3_900c、ZIF-67_OAc_900c、ZIF-67_NO3_CO2 30%_900c和ZIF-67_OAc_CO2 30%_900c製成CDI電極應用於CDI系統中(電吸附時間為40 min,反轉電壓1 min,零電壓脫附時間19 min),其對於Na+平均去除率分別為8.86%、31.44%、26.13%和34.21%,且平均電吸附量為146.70 μmol/g、655.45 μmol/g、368.30 μmol/g和537.80μmol/g,對同鈷源所合成的ZIF-67_NO3而言,先進行CO2吸附活化後再碳化,可有效提升材料的電吸附特性。
英文摘要
Capacitive Deionization (CDI) technology utilizes of low voltage to the electrodes, causing ions in the solution to move and electrostatically adsorb onto the electrode materials. It offers advantages such as low energy consumption, no secondary pollution, and ease of operation. Metal Organic Frameworks (MOFs) are a type of nanomaterial with a porous structure composed of organic ligands and metal ions in one-, two-, or three-dimensional arrangements. Depending on the synthesis method and chemicals used, different MOF materials with diverse potentials can be synthesized, providing high versatility and development prospects. This study focuses on Zeolitic Imidazolate Frameworks (ZIFs) within the MOF series, particularly ZIF-67, to investigate its CO2 adsorption capacity after synthesis using different cobalt sources. The adsorbed and unadsorbed CO2 on ZIF-67 are subjected to high-temperature carbonization  to transform into derived carbon materials, which are then explored for their feasibility in CDI systems.
ZIF-67 synthesized using cobalt nitrate and cobalt acetate exhibits characteristic peaks corresponding to lattice planes of (011), (002), (112), (022), (013), (222), (114), (233), (134), (044), (334), (244), and (235). After CO2 adsorption and carbonization at 900°C, all 13 characteristic peaks of ZIF-67 disappear, and new crystallographic peaks (111), (200), and (220) emerge, indicating that carbonization at 900°C transforms ZIF-67_NO3 or ZIF-67_OAc into derived carbon materials.
Surface morphology observed via SEM shows that the particle sizes of ZIF-67_NO3 and ZIF-67_OAc range from 550–2500 nm and 700–2500 nm, respectively. After carbonization, ZIF-67_NO3_900c particle size decreases to 350–450 nm, and the particle edges become smooth, whereas ZIF-67_OAc_900c particle size reduces to 200–250 nm, exhibiting wrinkled and fragmented appearances.
Using GC-TCD, the 24-hour CO2 adsorption capacity of synthesized ZIF-67_NO3 and ZIF-67_OAc was analyzed. ZIF-67_NO3 exhibited average adsorption rates of 26.79% and 28.96% for 20% and 30% CO2, with corresponding adsorption capacities of 0.184 mmol/g and 0.253 mmol/g. For ZIF-67_OAc, the average adsorption rates were 17.24% and 15.64%, with adsorption capacities of 0.118 mmol/g and 0.140 mmol/g. Notably, the CO2 adsorption capacity of ZIF-67_NO3 was 1.53 times higher than that of ZIF-67_OAc at 20% CO2 and increased to 1.81 times at 30% CO2 concentration.
BET analysis of ZIF-67_NO3 and ZIF-67_OAc revealed specific surface areas of 910.53 m²/g and 1137.90 m²/g, with a high proportion of microporous surface area. Direct carbonization after CO2 adsorption followed by carbonization , the resulting materials—ZIF-67_NO3_900c, ZIF-67_OAc_900c_ZIF-67_NO3_CO2 20%_900c, ZIF-67_OAc_CO2 20%_900c, ZIF-67_NO3_CO2 30%_900c, and ZIF-67_OAc_CO2 30%_900c—exhibited specific surface areas of 395.40, 439.18, 332.78, 364.41, 358.87, and 401.40 m²/g, respectively. Both surface area and microporous volume significantly decreased after carbonization, while the mesoporous proportion increased substantially, with the Vmeso/Vtot ratio exceeding 90%. This indicates that carbonization at 900°C profoundly affects the pore structure of ZIF-67_NO3 and ZIF-67_OAc, especially in mesopore formation.
Cyclic Voltammetry (CV) analysis revealed that the specific capacitance values of ZIF-67_NO3 and ZIF-67_OAc at scan rate of 1 mV/s were 11.03 F/g and 7.28 F/g, respectively. After carbonization at 900°C, the specific capacitance increased to 20.36 F/g and 16.88 F/g. For ZIF-67_NO3_20% CO2_900c and ZIF-67_OAc_30% CO2_900c, which underwent CO2 adsorption activation followed by carbonization, the specific capacitance further increased to 34.34 F/g and 33.36 F/g, respectively. This demonstrates that CO2 adsorption activation and subsequent carbonization enhance the electrochemical performance of the material.
ZIF-67_NO3_900c, ZIF-67_OAc_900c, and ZIF-67_NO3_CO2 30%_900c and ZIF-67_OAc_CO2 30%_900c were fabricated into CDI electrodes and applied to a CDI system (40 min electrosorption time, 1 min reverse voltage, and 19 min zero-voltage desorption time). Their average Na+ removal efficiencies were 8.86%, 31.44%, 26.13% and 34.21% with electrosorption capacities of 146.70 μmol/g, 655.45 μmol/g, and 368.30 μmol/g and 537.80 μmol/g respectively. For ZIF-67_NO3 synthesized from the same cobalt source, CO2 adsorption activation followed by carbonization effectively enhances the electrosorption characteristics of derived carbon materials.
第三語言摘要
論文目次
中文摘要	i
英文摘要	iii 
目錄	vi
圖目錄	ix
表目錄	xi
第一章 緒論	1
1.1 研究緣起	1
1.2 研究目的	2
第二章 文獻回顧	3
2.1 碳捕集、利用與封存技術	3
2.1.1 化學吸收	4
2.1.2 薄膜氣體分離法	5
2.1.3 金屬有機框架材料(MOF)應用於CO2吸附	5
2.2 海水淡化技術	6
2.3 電容去離子技術	6
2.3.1 電容去離子技術原理	6
2.4 金屬有機框架材料	9
2.4.1 ZIF-67	10
2.4.2 不同鈷源及Hmim比例對ZIF-67合成的影響	11
2.4.3 ZIF-67應用於CDI系統	12
2.4.4 ZIF-67應用於工業系統	12
第三章 實驗材料及方法	14
3.1 實驗架構	14
3.2 實驗藥品與設備	16
3.2.1 實驗藥品	16
3.2.2 實驗設備	17
3.3 電極材料製備	18
3.3.1 ZIF-67_NO3製備	18
3.3.2 ZIF-67_OAc製備	19
3.3.3 ZIF-67_NO3或ZIF-67-OAc吸附CO2實驗	20
3.3.4 ZIF-67_NO3及ZIF-67_OAc碳化材料製備	20
3.4 電極製備	22
3.4.1 ZIF-67衍生碳材料電極製備-噴槍法	22
3.4.2 CV電極製備	22
3.5 實驗分析方法	23
3.5.1 X射線繞射分析(X-ray diffractometer, XRD)	23
3.5.2 掃描電子顯微鏡(Scanning Electron Microscope, SEM)	23
3.5.3 氣相層析熱導度儀(Gas chromatography-Thermal Conductivity Detector , GC-TCD)	23
3.5.4 比表面積和孔徑分析儀(Brunauer-Emmett-Teller, BET)	24
3.5.5 接觸角分析儀(Contact Angle analysis, CA)	24
3.5.6 循環伏安法分析(Cyclic Voltammetry, CV)	25
3.5.7 傅立葉紅外線光譜儀(Fourier-transform infrared spectroscopy, FT-IR)	25
3.6 CDI實驗	26
3.6.1 CDI吸脫附極限實驗	26
3.6.2 CDI循環吸脫附實驗	26
3.6.3 感應耦合電漿光學發射光譜儀(Inductively coupled plasma, ICP)	28
3.6.4 離子層析儀(Ion Chromatography, IC)	28
第四章:結果與討論	29
4.1 硝酸鈷與乙酸鈷合成之ZIF-67吸附CO2	29
4.1.1 不同鈷源合成ZIF-67之CO2吸附	29
4.2 硝酸鈷或乙酸鈷合成之ZIF-67的物理化學特性分析	34
4.2.1 不同鈷源合成之ZIF-67表面特性與孔洞結構分析	34
4.2.2 不同鈷源合成ZIF-67之電化學特性分析	46
4.3 硝酸鈷與乙酸鈷合成之ZIF-67吸附CO2後衍生碳材應用於電容去離子系統	51
4.3.1 ZIF-67衍生碳材應用於電容去離子系統	51
4.3.2 ZIF-67吸附CO2後衍生碳材應用於電容去離子系統	53
第五章 結論與建議	56
參考文獻	58

圖目錄
Figure 2.1.1.1 Gas absorber using a solvent regenerated by stripping (R.H. Perry, D.W. Green, , 2008.)	4
Figure 2.3.1.1 Schematic of capacitive Deionization.	7
Figure 2.3.1.2 Diagram of electric double layer ( Soo-Jin Park et al. 2011).	8
Figure 2.3.1.1 Figure Simple schematic of forming metal organic frame work (MOF).( Yu Shouwu et al. 2019)	9
Figure 2.4.4.1 Schematic research structure of ZIF-67 for CO2 adsorption and CDI application	15
Figure 3.3.1.1 Synthesis procedure of ZIF-67	18
Figure 3.3.2.1 Synthesis procedure of ZIF-67_OAc	19
Figure 3.3.4.1 adsorption CO2 process of ZIF-67	21
Figure 3.6.2.1 Schematic diagram of CDI system	27
Figure 4.1.1.1 ZIF-67 synthesized from different cobalt sources for adsorption of 20% or 30% carbon dioxide.	30
Figure 4.1.1.2 CO2(g) adsorption isotherms of the as-synthesized ZIF-67 at 0°C (273 K,1 bar), 25°C (298 K,1 bar), 50°C (232 K,1 bar).	32
Figure 4.2.1.1  XRD Spectra of ZIF-67_NO3, ZIF-67_OAc, ZIF-67_NO3_900c, and ZIF-67_OAc_900c.	36
Figure 4.2.1.2 SEM spectra of (a) (b) ZIF-67_NO3, (c) (d) ZIF-67_OAc, (e) (f) ZIF-67_NO3_900c, (g) (h) ZIF-67_OAc_900c with magnification at 5 KX and 15 KX.	37
Figure 4.2.1.3 SEM spectra of (a) ZIF-67_NO3, (b) ZIF-67_NO3_900c, (c) ZIF-67_OAc, and (d) ZIF-67_OAc_900c with magnification at 30 KX.	38
Figure 4.2.1.4 The comparison chart of SBET and Average Pore Diameter	40
Figure 4.2.1.5 The comparison of FT-IR spectra of ZIF-67_NO3, ZIF-67_OAc, ZIF-67_NO3_20% CO2, ZIF-67_NO3_30% CO2, ZIF-67_OAc_20% CO2, and ZIF-67_OAc_30% CO2	43
Figure 4.2.1.6 FT-IR spectra of (a) ZIF-67_NO3 and (b) ZIF-67_OAc.	44
Figure 4.2.1.7 Contant angles of ZIF-67 derived porous activated carbons (a1)-(a3) ZIF-67_NO3_900c and (b1)-(b3) ZIF-67_OAc_900c.	45
Figure 4.2.2.1 Cyclic voltammograms (CV) of (a) ZIF-67_NO3, (b) ZIF-67_OAc, (c) ZIF-67_NO3_900c, and (d) ZIF-67_OAc_900c	47
Figure 4.2.2.2 Cyclic voltammograms (CV) of (a) ZIF-67_NO3_30% CO2_900c, and (b) ZIF-67_NO3_20% CO2_900c , (c) ZIF-67_OAc_30% CO2_900c, and (d) ZIF-67_OAc_20% CO2_900c.	48
Figure 4.2.2.3 The comparison chart of Cyclic voltammograms (CV) of (a) ZIF-67_NO3_30% CO2_900c, and (b) ZIF-67_NO3_20% CO2_900c , (c) ZIF-67_OAc_30% CO2_900c, and (d) ZIF-67_OAc_20% CO2_900c.	49
Figure 4.3.1.1 Conductivity and sodium concentration changes during the electrosorption (40 minutes) and desorption (20 minutes) process with (a)GAC, (b)ZIF-67_NO3_900c, (c)ZIF-67_OAc_900c electrodes applied in CDI system	52
Figure 4.3.2.1 Conductivity changes during the electrosorption (40 minutes) and desorption (20 minutes) process with (a)ZIF-67_NO3_30% CO2_900c and (b) ZIF-67_OAc_30% CO2_900c electrodes applied in CDI system	54

表目錄
Table 3.2.1.1 Manufactures and purity of experimental chemical	16
Table 3.2.2.1 Manufactures and models of experimental equipment	17
Table 4.1.1.1 ZIF-67 synthesized from different cobalt sources for adsorption of 20% or 30% carbon dioxide.	31
Table 4.1.1.2 ZIF-67 synthesized from different cobalt sources for adsorption of 20% or 30% carbon dioxide.	33
Table 4.2.1.1 Specific surface area and porosity analyses of ZIF-67 with different cobalt sources for adsorption of 20% or 30% carbon dioxide and different carbonization temperature.	41
Table 4.2.2.1 Specific capacitances (F/g) of GAC and ZIF-67 derived porous activated carbons with various scan rates.	50
Table 4.3.2.1 Na+ removal effcieency (%) and electrosorption capacity (μmol/g) of ZIF-67_NO3_900c, ZIF-67_OAc_900c, ZIF-67_NO3_30% CO2_900c electrodes in the CDI system during the electrosorption (40 minutes) and desorption (20 minutes) process.	55
參考文獻
參考文獻

  Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442. doi:10.1016/j.pmatsci.2013.03.005

  Orr, Franklin M.. (2018). Carbon Capture, Utilization, and Storage: An Update. SPE Journal, 23(6), 2444–2455. doi:10.2118/194190-PA 

  Abdeen, Fouad R.H.; Mel, Maizirwan; Jami, Mohammed Saedi; Ihsan, Sany Izan; Ismail, Ahmad Faris . (2016). A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering, S1004954116304335. doi:10.1016/j.cjche.2016.05.006

  Abdeen, Fouad R.H.; Mel, Maizirwan; Jami, Mohammed Saedi; Ihsan, Sany Izan; Ismail, Ahmad Faris . (2016). A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering, S1004954116304335. doi:10.1016/j.cjche.2016.05.006

  Jouke E. Dykstra. Desalination with porous electrodes – mechanisms of ion transport and adsorption, 194 pages. doi: 10.18174/443551

  Soo-Jin Park, Min-Kang Seo, in Interface Science and Technology, (2011). Volume 18, 2011, Pages 1-57 . doi. 10.1016/B978-0-12-375049-5.00001-3

  Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82, 220–223. doi:10.1016/j.matlet.2012.05.077

Zhong, G., Liu, D., & Zhang, J. (2018). The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 6(5), 1887–1899. doi:10.1039/c7ta08268a
T. Ghanbari, F. Abnisa, W.M.A. Wan Daud, A Review on Production of Metal OrganicFrameworks (MOF) for CO2 Adsorption, Science of the Total Environment (2019), doi: 10.1016/j.scitotenv.2019.135090

Zhong, Guihao; Liu, Dingxin; Zhang, Jianyong (2017). The Application of ZIF-67 and Its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. Journal of Materials Chemistry A, (), 10.1039.C7TA08268A–. doi:10.1039/c7ta08268a

Junfeng Qian; Fuan Sun; Lizhen Qin (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. , 82. doi:10.1016/j.matlet.2012.05.077

Guo, Xiangli; Xing, Tiantian; Lou, Yongbing; Chen, Jinxi (2015). Controlling ZIF-67 Crystals Formation through Various Cobalt Sources in Aqueous Solution. Journal of Solid State Chemistry, (), S0022459615302887–. doi:10.1016/j.jssc.2015.12.021

  Phuoc, N. M., Jung, E., Tran, N. A. T., Lee, Y.-W., Yoo, C.-Y., Kang, B.-G., & Cho, Y. (2020). Enhanced Desalination Performance of Capacitive Deionization Using Nanoporous Carbon Derived from ZIF-67 Metal Organic Frameworks and CNTs. Nanomaterials, 10(11), 2091. doi:10.3390/nano10112091

  Yiang-Chen Chou, Chin-Ming Huang, Wei-Cheng Chen, Hsuan-Chih Wu, Hou-Peng Wan, Heng-Wen Hsu. Development and Commercialization Plan of Calcium Looping Carbon Capture Process, (2020/05) Pp. 73-85,. doi.org/10.30041/CQ.202005_(109).0005

  Ghanbari, T., Abnisa, F., & Wan Daud, W. M. A. (2019). A Review on Production of Metal Organic Frameworks (MOF) for CO2 Adsorption. Science of The Total Environment, 135090. doi:10.1016/j.scitotenv.2019.1350

  Yu-Ming Li 1, Zi-Ye Liu 1, Qi-Yang Zhang, Ya-Jun Wang, Guo-Qing Cui, Zhen Zhao,
 Chun-Ming Xu, Gui-Yuan Jiang. Influence of carbonization temperature on cobalt-based nitrogendoped carbon nanopolyhedra derived from ZIF-67 for nonoxidative propane dehydrogenation. Volume 20, Issue 1, February 2023, Pages 559-568. doi.org/10.1016/j.petsci.2022.01.008

  Yeh, C.-L., Hsi, H.-C., Li, K.-C., & Hou, C.-H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60–68. doi:10.1016/j.desal.2015.03.035

  Ediati, R., Elfianuar, P., Santoso, E., Oktavia Sulistiono, D., & Nadjib, M. (2019). Synthesis of MCM-41/ZIF-67 Composite for Enhanced Adsorptive Removal of Methyl Orange in Aqueous Solution. Mesoporous Materials - Properties and Applications. doi:10.5772/intechopen.84691

Aaron, D., & Tsouris, C. (2005). Separation of CO2 from Flue Gas: A Review. Separation Science and Technology, 40(1-3), 321–348. doi:10.1081/ss-200042244 

Pan, Y., Li, H., Zhang, X.-X., Zhang, Z., Tong, X.-S., Jia, C.-Z., … Chen, G.-J. (2015). Large-scale synthesis of ZIF-67 and highly efficient carbon capture using a ZIF-67/glycol-2-methylimidazole slurry. Chemical Engineering Science, 137, 504–514. doi:10.1016/j.ces.2015.06.069
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信