| 系統識別號 | U0002-2101202623421800 |
|---|---|
| 論文名稱(中文) | 虛擬試妝體驗對女性消費者使用意圖影響之研究—以容貌焦慮為干擾變數 |
| 論文名稱(英文) | The Impact of Virtual Makeup Try-On on Female Consumers' Usage Intentions: The Moderating Role of Appearance Anxiety |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 國際企業學系碩士班 |
| 系所名稱(英文) | Master's Program, Department Of International Business |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 114 |
| 學期 | 1 |
| 出版年 | 115 |
| 研究生(中文) | 黃苡齊 |
| 研究生(英文) | I-Chi Huang |
| 學號 | 613550077 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2026-01-05 |
| 論文頁數 | 136頁 |
| 口試委員 |
指導教授
-
張俊惠(en0212@mail.tku.edu.tw)
口試委員 - 魏上淩 口試委員 - 曾威智 |
| 關鍵字(中) |
虛擬試妝 科技接受模型 享樂價值 容貌焦慮 |
| 關鍵字(英) |
Virtual Makeup Try-On Technology Acceptance Model Hedonic Value Appearance Anxiety |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
疫情期間,實體消費受到限制,導致全球美妝產業銷售下滑。隨著數位科技快速發展與消費者行為改變,虛擬試妝(Virtual Makeup Try-On, VMT)逐漸成為品牌數位轉型的重要工具。虛擬試妝不僅降低消費者實體試妝的門檻與心理壓力,也能提升品牌曝光率與消費者參與度。根據 Grand View Research (2023) 的統計,女性仍為美妝市場的主要消費群體,且虛擬試妝使用與彩妝消費高度相關,因此衡量女性消費者對虛擬試妝的使用意圖成為研究關鍵。
本研究以女性為目標受眾,採用科技接受模型(TAM)為理論基礎,探討知覺易用性與知覺有用性對虛擬試妝使用意圖的影響,並納入享樂價值以檢視互動體驗中的愉悅感是否也為關鍵影響因素。此外,本研究亦關注容貌焦慮對消費者行為的影響,檢驗不同容貌焦慮程度者在使用虛擬試妝時的關鍵因素是否有所差異。
本研究透過網路問卷收集共 343 份有效樣本,並使用 LISREL 8.71 版軟體進行結構方程式分析。結果顯示,在整體有效樣本中,享樂價值與知覺易用性對使用意圖具顯著正向影響,且知覺有用性與使用態度皆扮演重要的中介角色。此外,本研究以整體有效樣本之容貌焦慮平均值做分群分析,發現低容貌焦慮者高度重視享樂價值,知覺易用性的影響力則明顯較低;高容貌焦慮者除同樣視享樂價值為重要因素外,知覺易用性的影響力亦不容忽視,說明兩者對該族群皆具關鍵影響作用。進一步比較發現,高容貌焦慮者知覺易用性的總影響力大於低容貌焦慮者,顯示焦慮程度較高的消費者對操作便利性有更高的期望。
綜合而言,本研究證實享樂價值、知覺易用性、知覺有用性及使用態度在評估女性消費者對虛擬試妝使用意圖時的相互作用,並揭示容貌焦慮對其行為差異的影響,為美妝品牌在制定數位化策略與使用者體驗設計提供實務參考。
|
| 英文摘要 |
During the COVID-19 pandemic, restrictions on physical consumption led to a decline in sales across the global beauty industry. With the rapid advancement of digital technology and shifts in consumer behavior, Virtual Makeup Try-On (VMT) has emerged as a critical tool for brands' digital transformation. VMT not only lowers the barriers and psychological pressure associated with physical try-ons but also enhances brand exposure and consumer engagement. According to Grand View Research (2023), women remain the dominant consumer segment in the beauty market, and the usage of VMT is highly correlated with makeup consumption. Therefore, assessing female consumers' intention to use VMT has become a key area of research.
This study targets female consumers and adopts the Technology Acceptance Model (TAM) as its theoretical foundation. It explores the effects of Perceived Ease of Use and Perceived Usefulness on the intention to use VMT, while incorporating Hedonic Value to determine whether the playfulness derived from the interactive experience serves as an influential factor. Furthermore, the study addresses the impact of Appearance Anxiety on consumer behavior, examining whether the key determinants of VMT usage differ among individuals with varying levels of anxiety.
A total of 343 valid samples were collected via online questionnaires, and Structural Equation Modeling (SEM) was conducted using LISREL 8.71. The results indicate that for the overall sample, both Hedonic Value and Perceived Ease of Use have a significant positive effect on usage intention, with Perceived Usefulness and Attitude Towards Using playing important mediating roles. Group analysis based on the mean value of Appearance Anxiety reveals that the low-anxiety group places a high emphasis on Hedonic Value, while the influence of Perceived Ease of Use is notably weaker. Conversely, the high-anxiety group regards Hedonic Value as important, but the influence of Perceived Ease of Use is also significant, indicating that both factors are critical for this segment. Further comparison shows that the total effect of Perceived Ease of Use is stronger for the high-anxiety group
than for the low-anxiety group, suggesting that consumers with higher anxiety have higher expectations for operational convenience.
In conclusion, this study validates the interrelationships among Hedonic Value, Perceived Ease of Use, Perceived Usefulness, and Attitude Towards Using in assessing women's intention to use VMT. It also reveals the behavioral differences caused by Appearance Anxiety, providing practical references for beauty brands in formulating digitalization strategies and designing user experiences.
|
| 第三語言摘要 | |
| 論文目次 |
目錄 目錄 v 表目錄 vii 圖目錄 ix 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 7 第三節 研究目的 9 第四節 研究範圍及對象 9 第五節 研究流程 10 第二章 文獻回顧 11 第一節 虛擬試妝的定義、演進歷程與市場概況 11 第二節 科技接受模型(TAM)及其相關文獻 20 第三節 享樂價值及其相關文獻 28 第四節 容貌焦慮及其相關文獻 30 第三章 研究方法 32 第一節 研究架構 32 第二節 研究假說 34 第三節 研究變數之操作型定義及衡量問項 38 第四節 研究設計 44 第五節 資料分析方法 48 第四章 資料分析與結果 53 第一節 敘述性統計分析 53 第二節 結構方程式模型分析 79 第五章 研究結論與發現 106 第一節 研究結論 106 第二節 研究發現 108 第三節 研究限制與未來研究建議 112 參考文獻 114 附錄:研究問卷 124 表目錄 表3-1 本研究假說之彙整表 37 表3-2 享樂價值之操作型定義及衡量問項 38 表3-3 知覺易用性之操作型定義及衡量問項 39 表3-4 知覺有用性之操作型定義及衡量問項 40 表3-5 使用態度之操作型定義及衡量問項 41 表3-6 使用意圖之操作型定義及衡量問項 42 表3-7 容貌焦慮之操作型定義及衡量問項 43 表3-8 本研究發放問卷與回收情形 45 表3-9 本研究低與高容貌焦慮樣本之平均值明細 46 表3-10 LISREL符號說明 50 表3-11 整體模型配適度之準則 52 表4-1 整體及低/高容貌焦慮樣本之購買臉部彩妝產品經驗分布情況 54 表4-2 整體及低/高容貌焦慮購買者樣本之平均每次購買臉部彩妝產品金額分布情況 55 表4-3 整體及低/高容貌焦慮購買者樣本之平均每次購買臉部彩妝產品頻率分布情況 56 表4-4 整體及低/高容貌焦慮購買者樣本之經常購買臉部彩妝產品類型分布情況 57 表4-5 整體及低/高容貌焦慮購買者樣本之優先購買臉部彩妝產品類型分布情況 58 表4-6 整體及低/高容貌焦慮購買者樣本之主要購買臉部彩妝產品通路分布情況 59 表4-7 整體及低/高容貌焦慮樣本之使用虛擬試妝經驗分布情況 60 表4-8 整體及低/高容貌焦慮使用者樣本之得知虛擬試妝管道分布情況 61 表4-9 整體及低/高容貌焦慮使用者樣本之使用虛擬試妝原因分布情況 62 表4-10 整體及低/高容貌焦慮使用者樣本之使用虛擬試妝裝置分布情況 63 表4-11 整體及低/高容貌焦慮未使用者樣本之未使用虛擬試妝原因分布情況 64 表4-12 整體及低/高容貌焦慮樣本之體驗虛擬試妝之彩妝品牌分布情況 65 表4-13 整體及低/高容貌焦慮樣本之虛擬試妝主要體驗之臉部彩妝產品分布情況 66 表4-14 整體及低/高容貌焦慮樣本之使用虛擬試妝功能分布情況 67 表4-15 整體及低/高容貌焦慮樣本之認為使用虛擬試妝最有幫助的功能分布情況 68 表4-16 整體及低/高容貌焦慮樣本之年齡分布情況 69 表4-17 整體及低/高容貌焦慮樣本之婚姻狀況分布情況 70 表4-18 整體及低/高容貌焦慮樣本之教育程度分布情況 71 表4-19 整體及低/高容貌焦慮樣本之職業分布情況 72 表4-20 整體及低/高容貌焦慮樣本之個人每月可支配所得分布情況 73 表4-21 整體及低/高容貌焦慮樣本之居住地分布情況 74 表4-22 低/高容貌焦慮購買者樣本之主要購買臉部彩妝產品通路比較 75 表4-23 低/高容貌焦慮使用者樣本之得知虛擬試妝管道比較 76 表4-24 低/高容貌焦慮使用者樣本之使用虛擬試妝原因比較 77 表4-25 低/高容貌焦慮使用者樣本之認為使用虛擬試妝最有幫助的功能比較 77 表4-26 線性結構模型之相關參數說明 81 表4-27 整體及低/高容貌焦慮樣本模型之配適度衡量結果彙整表 85 表4-28 整體樣本衡量模式之評估結果 86 表4-29 低容貌焦慮樣本衡量模式之評估結果 89 表4-30 高容貌焦慮樣本衡量模式之評估結果 91 表4-31 整體樣本模型之假說驗證結果 94 表4-32 低容貌焦慮樣本模型之假說驗證結果 96 表4-33 高容貌焦慮樣本模型之假說驗證結果 98 表4-34 整體樣本路徑效果分析 100 表4-35 低容貌焦慮樣本路徑效果分析 102 表4-36 高容貌焦慮樣本路徑效果分析 104 圖目錄 圖1-1 全球美妝市場地區銷售額 1 圖1-2 2023年全球美妝市場消費者性別佔比 2 圖1-3 全球虛擬試妝市場規模與預測 3 圖1-4 2025年虛擬試妝市場趨勢 4 圖1-5 研究流程 10 圖2-1 MAYBELLINE虛擬試妝示意圖 12 圖2-2 2009年至2022年彩妝轉移技術重大進程 15 圖2-3 虛擬試妝運作流程 16 圖2-4 理性行為理論(TRA)架構圖 21 圖2-5 計畫行為理論(TPB)架構圖 22 圖2-6 科技接受模型(TAM) 23 圖2-7 科技接受模型I修正版(TAM I) 24 圖2-8 科技接受模型II(TAM II) 25 圖2-9 整合科技接受模型(UTAUT) 26 圖2-10 延伸型整合科技接受模型(UTAUT 2) 27 圖3-1 本研究架構 33 圖4-1 本研究整體模型之線性結構關係圖 80 圖4-2 本研究整體樣本之線性結構模型關係路徑分析圖 99 圖4-3 本研究低容貌焦慮樣本之線性結構模型關係路徑分析圖 101 圖4-4 本研究高容貌焦慮樣本之線性結構模型關係路徑分析圖 103 |
| 參考文獻 |
中文文獻 于茵卉。(2021)。AR擴增實境試妝科技與消費者使用動機之研究[碩士論文。國立臺灣大學國際企業學系研究所]。臺灣博碩士論文知識加值系統。 江明潔。(2015)。以科技接受模式探討讀者使用資源探索服務的意願:以臺灣聯合大學系統為例[碩士論文。國立臺灣大學圖書資訊學系研究所]。臺灣博碩士論文知識加值系統。 李彥甫。(2019)。從科技接受模型探討虛擬實境購物之行為[碩士論文。國立屏東大學行銷與流通管理學系研究所]。臺灣博碩士論文知識加值系統。 肖彬彬、朱摯凡、劉卓、李融與楊春玉。(2022)。消費意願在外貌焦慮與化妝品消費行為之間的中介效應—以南京市為例。現代商業,(18),3-7。 周文賢。(2004)。多變量統計分析: SAS/ STAT使用方法。智勝文化。 姚開屏。(1993)。結構方程模型的基本原則及符號。職能治療學會雜誌, 11, 79-93。https://doi.org/10.6594/JTOTA.1993.11.08 張偉豪。(2011)。SEM論文寫作不求人。鼎茂圖書。 郭雯雅。(2025)。虛擬試妝之個人化體驗:消費價值、社交焦慮與外貌自尊的調節效果[碩士論文。國立暨南國際大學國際企業學系研究所]。臺灣博碩士論文知識加值系統。 黃富廷。(2003)。線性結構關係 (LISREL) 之統計學原理。臺東特教,18, 45-51. 英文文獻 Agarwal, R., and Karahanna, E. (2000). Time Flies When You're Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage. MIS Quarterly, 24(4), 665-694. https://doi.org/10.2307/3250951 Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11-39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2 Aparicio-Martinez, P., Perea-Moreno, A. -J., Martinez-Jimenez, M. P., Redel-Macías, M. D., Pagliari, C., and Vaquero-Abellan, M. (2019). Social Media, Thin-Ideal, Body Dissatisfaction and Disordered Eating Attitudes: An Exploratory Analysis. International Journal of Environmental Research and Public Health, 16(21), Article 4177. https://doi.org/10.3390/ijerph16214177 Babin, B. J., Darden, W. R., and Griffin, M. (1994). Work and/or Fun: Measuring Hedonic and Utilitarian Shopping Value. Journal of Consumer Research, 20(4), 644-656. http://www.jstor.org/stable/2489765 Bagozzi, R. P., and Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327 Batool, R., and Mou, J. (2024). A Systematic Literature Review and Analysis of Try-On Technology: Virtual Fitting Rooms. Data and Information Management, 8(2), Article 100060. https://doi.org/10.1016/j.dim.2023.100060 Bentler, P. M. (1990). Comparative Fit Indexes in Structural Models. Psychological Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238 Bentler, P. M., and Bonett, D. G. (1980). Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psychological Bulletin, 88(3), 588-606. https://doi.org/10.1037/0033-2909.88.3.588 Cai, Z., Gui, Y., Wang, D., Yang, H., Mao, P., and Wang, Z. (2021). Body Image Dissatisfaction and Impulse Buying: A Moderated Mediation Model. Frontiers in Psychology, 12, Article 653559. https://doi.org/10.3389/fpsyg.2021.653559 Dabholkar, P. A., and Bagozzi, R. P. (2002). An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors. Journal of the Academy of Marketing Science, 30, 184-201. https://doi.org/10.1177/0092070302303001 Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. [Doctoral Dissertation, Massachusetts Institute of Technology]. MIT Libraries. https://dspace.mit.edu/handle/1721.1/15192 Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008 Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982 Ernst, C.-P. H., Pfeiffer, J., and Rothlauf, F. (2013). Hedonic and Utilitarian Motivations of Social Network Site Adoption. (Working Paper No. 01/2013). Johannes Gutenberg University Mainz. Festinger, L. (1954). A Theory of Social Comparison Processes. Human Relations, 7(2), 117-140. https://doi.org/10.1177/001872675400700202 Fiore, A. M., Kim, J., and Lee, H.-H. (2005). Effect of Image Interactivity Technology on Consumer Responses Toward the Online Retailer. Journal of Interactive Marketing, 19(3), 38-53. https://doi.org/10.1002/dir.20042 Fishbein, M., and Ajzen, I. (1975). Belief, Attitude, Intention and Behaviour: An Introduction to Theory and Research. Addison-Wesley. Fitrianie, S., Horsch, C., Beun, R. J., Griffioen-Both, F., and Brinkman, W. P. (2021). Factors Affecting User's Behavioral Intention and Use of a Mobile-Phone-Delivered Cognitive Behavioral Therapy for Insomnia: A Small-Scale UTAUT Analysis. Journal of Medical System, 45, Article 110. https://doi.org/10.1007/s10916-021-01785-w Gilbert, J. (2021). How L’Oréal Adopted New Technologies to Scale Personalisation, Adapt to New Customer Demands and Evolve Into the Top Beauty Tech Company. Journal of Digital & Social Media Marketing, 9(2), 102-110. https://doi.org/10.69554/JYIZ2460 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2020). Generative Adversarial Networks. Communications of the ACM, 63(11), 139-144. https://doi.org/10.1145/3422622 Guo, D., and Sim, T. (2009). Digital Face Makeup by Example. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 73-79). IEEE. https://doi.org/10.1109/CVPR.2009.5206833 Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. (1998). Multivariate Data Analysis (5th ed.). Prentice Hall. Hart, T. A., Flora, D. B., Palyo, S. A., Fresco, D. M., Holle, C., and Heimberg, R. G. (2008). Development and Examination of the Social Appearance Anxiety Scale. Assessment, 15(1), 48–59. https://doi.org/10.1177/1073191107306673 Heatherton, T. F., and Polivy, J. (1991). Development and Validation of a Scale for Measuring State Self-Esteem. Journal of Personality and Social Psychology, 60(6), 895-910. https://doi.org/10.1037/0022-3514.60.6.895 Hirschman, E. C. (1984). Experience Seeking: A Subjectivist Perspective of Consumption. Journal of Business Research, 12(1), 115-136. https://doi.org/10.1016/0148-2963(84)90042-0 Holbrook, M. B., and Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun. Journal of Consumer Research, 9(2), 132-140. http://www.jstor.org/stable/2489122 Hong, B.-S., and Na, Y.-K. (2008). The Effect of the Perceived Hedonic Value, Usefulness and Ease of Use on Attitude Toward Using in Internet Shopping Mall and Purchase Intention of the Fashion Merchandise. Journal of the Korean Society of Clothing and Textiles, 32(1), 147-156. https://doi.org/10.5850/JKSCT.2008.32.1.147 Hu, L., and Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118 Hu, S., Liu, X., Zhang, Y., Li, M., Zhang, L. Y., Jin, H., and Wu, L. (2022). Protecting Facial Privacy: Generating Adversarial Identity Masks via Style-Robust Makeup Transfer. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14994-15003). IEEE. https://doi.org/10.1109/CVPR52688.2022.01459 Jöreskog, K. G. (1970). A General Method for Estimating a Linear Structural Equation System. (Research Bulletin No. 70-54). Educational Testing Service. https://doi.org/10.1002/j.2333-8504.1970.tb00783.x Kapdi, R. (2023). A Comprehensive Review of Virtual Makeup Transfer: Current Techniques, Challenges, and Future Directions. [Course Report, Thompson Rivers University]. ResearchGate. https://doi.org/10.13140/RG.2.2.23844.65923 Kim, J., and Forsythe, S. (2008). Adoption of Virtual Try-On Technology for Online Apparel Shopping. Journal of Interactive Marketing, 22(2), 45-59. https://doi.org/10.1002/dir.20113 Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). The Guilford Press. Li, T., Qian, R., Dong, C., Liu, S., Yan, Q., Zhu, W., and Lin, L. (2018). BeautyGAN: Instance-Level Facial Makeup Transfer With Deep Generative Adversarial Network. In Proceedings of the 26th ACM International Conference on Multimedia (pp. 645-653). Association for Computing Machinery. https://doi.org/10.1145/3240508.3240618 Liu, S., Ou, X., Qian, R., Wang, W., and Cao, X. (2016). Makeup Like a Superstar: Deep Localized Makeup Transfer Network. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (pp. 2568–2575). AAAI Press. Lyu, Y., Chen, P., Sun, J., Peng, B., Wang, X., and Dong, J. (2024). DRAN: Detailed Region-Adaptive Normalization for Conditional Image Synthesis. IEEE Transactions on Multimedia, 26, 1969-1982. https://doi.org/10.1109/TMM.2023.3290481 Moon, J.-W., and Kim, Y.-G. (2001). Extending the TAM for a World-Wide-Web Context. Information & Management, 38(4), 217-230. https://doi.org/10.1016/S0378-7206(00)00061-6 Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., and Stilwell, C. D. (1989). Evaluation of Goodness-of-Fit Indices for Structural Equation Models. Psychological Bulletin, 105(3), 430-445. https://doi.org/10.1037/0033-2909.105.3.430 Nguyen, T. V., and Liu, L. (2017). Smart Mirror: Intelligent Makeup Recommendation and Synthesis. In Proceedings of the 25th ACM International Conference on Multimedia (pp. 1253-1254). Association for Computing Machinery. https://doi.org/10.1145/3123266.3127926 Rachmiati, P. R. (2024). Discover Your Perfect Look: Virtual Makeup Try-On Revolutionizes Shopping Experience on Shopee! Asian Journal of Engineering, Social and Health, 3(6), 1344-1358. https://doi.org/10.46799/ajesh.v3i6.345 Rahmiati, R., and Susanto, P. (2022). The Effects of Social Influence, Hedonic Motivation, and Habit on E-Money Behavioral Intention: The Role of Perceived Risk as a Moderator. In Proceedings of the 8th Padang International Conference on Economics Education, Economics, Business and Management, Accounting and Entrepreneurship (pp. 184-189). Atlantis Press. https://doi.org/10.2991/aebmr.k.220702.027 Thompson, J. K., Heinberg, L. J., Altabe, M., and Tantleff-Dunn, S. (1999). Exacting Beauty: Theory, Assessment, and Treatment of Body Image Disturbance. American Psychological Association. https://doi.org/10.1037/10312-000 van der Heijden, H. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695-704. https://doi.org/10.2307/25148660 Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion Into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872 Venkatesh, V., and Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926 Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540 Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412 Xiao, Y., Liu, M., and Wu, B. (2023). The Effect of Social Appearance Anxiety on the Online Impulse Purchases of Fashionable Outfits Among Female College Students During Pandemic Periods: The Mediating Role of Self-Control and the Moderating Role of Subjective Socioeconomic Status. Psychol Research of Behavior Management, 16, 303-318. https://doi.org/10.2147/prbm.S392414 Yan, Q., Guo, C., Zhao, J., Dai, Y., Loy, C. C., and Li, C. (2022). BeautyREC: Robust, Efficient, and Content-Preserving Makeup Transfer. arXiv. https://doi.org/10.48550/arXiv.2212.05855 Yang, C., He, W., Xu, Y., and Gao, Y. (2022). EleGANt: Exquisite and Locally Editable Gan for Makeup Transfer. In Avidan, S., Brostow, G., Cissé, M., Farinella, G. M., Hassner, T. (eds.), Computer Vision – ECCV 2022 (pp. 737-754). Springer. https://doi.org/10.1007/978-3-031-19787-1_42 Yang, J., and Lin, Z. (2024). From Screen to Reality: How AR Drives Consumer Engagement and Purchase Intention. Journal of Digital Economy, 3, 37-46. https://doi.org/10.1016/j.jdec.2024.07.001 Yim, M. Y.-C., and Park, S.-Y. (2019). I Am Not Satisfied With My Body, So I Like Augmented Reality (AR): Consumer Responses to AR-Based Product Presentations. Journal of Business Research, 100, 581-589. https://doi.org/10.1016/j.jbusres.2018.10.041 Zeithaml, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. Journal of Marketing, 52(3), 2-22. https://doi.org/10.1177/002224298805200302 Zhou, C., Zhang, X., and Kaner, J. (2024). Examining the Factors Affecting Sustained Use in Smart Interactive Cabinet Design: A Comparative Analysis Using SEM and fsQCA. Heliyon, 10(21), Article e39715. https://doi.org/10.1016/j.heliyon.2024.e39715 Zhou, Z. (2023). The Influence of Social Appearance Anxiety on Impulsive Consumption and Acceptance of Cosmetic Surgery: Evidence From the Multiple Mediation Model. Highlights in Business, Economics and Management, 6, 432-436. https://doi.org/10.54097/hbem.v6i.6482 網路文獻 屈臣氏集團。(2018)。屈臣氏集團開設首間美妝概念店Colorlab by Watsons 計劃年內於中國內地增設五十家。屈臣氏集團。https://www.aswatson.com/zh/a-s-watson-celebrates-launch-of-new-concept-makeup-store/ Dove. (2004). The Real Truth About Beauty: A Global Report. Dove. https://www.clubofamsterdam.com/contentarticles/52%20Beauty/dove_white_paper_final.pdf Dove. (2024). The Real State of Beauty: A Global Report. Dove. https://assets.unileversolutions.com/v1/125436646.pdf Free Yourself. (2025). Virtual Try-On Beauty Technology Statistics for 2025. Free Yourself. http://freeyourself.com/blogs/news/virtual-try-on-beauty-technology-statistics Grand View Research. (2023). Cosmetics Market (2024 - 2030). Grand View Research. https://www.grandviewresearch.com/industry-analysis/cosmetics-market ID Tech. (2025). M.A.C. Cosmetics Faces BIPA Class Action Over Virtual Try-On Tool. ID Tech. https://idtechwire.com/m-a-c-cosmetics-faces-bipa-class-action-over-virtual-try-on-tool/ McKinsey & Company. (2023). The Beauty Market in 2023: A Special State of Fashion Report. McKinsey & Company. https://www.mckinsey.com/industries/retail/our-insights/the-beauty-market-in-2023-a-special-state-of-fashion-report McKinsey & Company. (2025). How Beauty Players Can Scale Gen AI in 2025. McKinsey & Company. https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/how-beauty-players-can-scale-gen-ai-in-2025 Perfect Corp. (2023). How Clinique Is Leaning Into the Digital Transformation. Perfect Corp. https://www.perfectcorp.com/business/blog/makeup/how-clinique-is-leaning-into-the-digital-transformation Perfect Corp. (2024). Ecommerce Conversion Rate Optimization With Makeup Virtual Try-On. Perfect Corp. https://www.perfectcorp.com/business/blog/makeup/ecommerce-conversion-rate-optimization Verified Market Research. (2024). Virtual Makeup Try On Market Size and Forecast. Verified Market Research. https://www.verifiedmarketresearch.com/product/virtual-makeup-try-on-market/ |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信