系統識別號 | U0002-1906202416365400 |
---|---|
DOI | 10.6846/tku202400270 |
論文名稱(中文) | 以保護動機理論探討使用生成式人工智慧之意圖:以ChatGPT為例 |
論文名稱(英文) | Exploring the Intention of Using of Generative Artificial Intelligence through Protection Motivation Theory: a Case of Chat GPT |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 會計學系碩士班 |
系所名稱(英文) | Department of Accounting |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 陳怡君 |
研究生(英文) | Yi-Chun Chen |
學號 | 611600189 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-06-14 |
論文頁數 | 59頁 |
口試委員 |
指導教授
-
方郁惠(yhfang@mail.tku.edu.tw)
口試委員 - 汪美伶 口試委員 - 劉仲矩 |
關鍵字(中) |
生成式人工智慧 保護動機理論 害怕失去權力 抵抗程度 |
關鍵字(英) |
Generative Artificial Intelligence Protection Motivation Theory Fear of Losing Power Resistance to Use |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
隨著科技的迅速進步,生成式人工智慧(GAI)在各領域的應用越來越廣泛,尤其是Chat GPT出現並迅速成為全球焦點。然而,GAI的迅速發展同時引發了一系列負面影響,包括隱私問題、錯誤資訊、偏見和失業風險。本研究以保護動機理論(PMT)作為基礎架構,探討這些負面影響及其成因,並分析情緒反應如何影響人們對生成式人工智慧技術之意願。本研究藉由問卷調查法,並運用SPSS 26.0與AMOS 28.0對588份有效樣本進行檢驗。研究結果發現,感知威脅嚴重性與感知威脅脆弱性對害怕失去權力呈正向顯著影響;而害怕失去權力對使用Chat GPT之抵抗程度正向顯著影響。另外,本研究也進行性別的分群探討,將588份有效樣本分成男生組(294份)與女生組(294份),發現男性與女性在面對感知威脅嚴重性和感知威脅脆弱性對害怕失去權力之影響不相同。 研究意涵、管理意涵及研究限制也在最後章節逐一討論。 |
英文摘要 |
As technology rapidly advances, Generative Artificial Intelligence (GAI) applications are becoming increasingly widespread across various fields, particularly with the emergence of Chat GPT, which has quickly garnered global attention. However, the development of GAI also brings about a series of negative impacts, including privacy issues, misinformation, biases, and unemployment risks. This study, based on the Protection Motivation Theory (PMT), explores these negative impacts and their causes, and analyzes how emotional responses influence people's intentions to use Generative Artificial Intelligence. Using a questionnaire survey method and employing SPSS 26.0 and AMOS 28.0 for analysis, 588 valid samples were examined. The results indicate that perceived threat severity and perceived threat vulnerability significantly and positively affect the fear of losing power, which in turn significantly and positively impacts the resistance to using Chat GPT. Additionally, the study conducted a gender-based subgroup analysis, dividing the 588 valid samples into male (294) and female (294) groups, and found differences in how perceived threat severity and vulnerability affect the fear of losing control between males and females. The research implications, managerial implications, and limitations of the study are also discussed in the final chapter. |
第三語言摘要 | |
論文目次 |
第壹章 緒論...........................1 第一節 研究背景與動機.................1 第二節 研究目的與問題.................4 第三節 預期之研究貢獻.................5 第四節 研究流程......................6 第貳章 文獻探討........................7 第一節 生成式人工智慧介紹(GAI).......7 第二節 AI的負面影響..................9 第三節 保護動機理論(PMT)...........12 第四節 害怕(FEAR).................15 第參章 研究設計與方法.................16 第一節 研究架構與假說發展.............16 第二節 研究方法與問卷發放.............20 第三節 研究變數與衡量方法.............21 第肆章 實證分析與討論..................23 第一節 樣本基本資料分析..............23 第二節 敘述性統計分析................26 第三節 共同方法變異分析..............27 第四節 信度分析.....................28 第五節 效度分析.....................29 第六節 結構方程式模型分析.............35 第七節 事後分析.....................43 第伍章 結論與建議.....................48 第一節 研究意涵.....................48 第二節 管理意涵.....................50 第三節 研究限制與建議................51 參考文獻.............................52 中文文獻.............................52 英文文獻.............................52 圖目錄 圖 1-4-1 本研究流程圖..................6 圖 3-1-1 本研究架構圖.................16 圖 4-6-1 研究架構模型之路徑分析.........40 圖 4-7-1 男生組研究架構模型之路徑分析....47 圖 4-7-2 女生組研究架構模型之路徑分析....47 表目錄 表 4-1-1 本研究樣本特性描述..............24 表 4-1-2 無反應偏差檢定結果..............25 表 4-2-1 本研究敘述性統計量表............26 表 4-3-1 共同方法變異-HARMAN 單因子檢定...27 表 4-4-1 本研究信度分析結果...........28 表目錄(續) 表 4-5-1 感知威脅嚴重性之驗證性因素分析......29 表 4-5-2 感知威脅脆弱性之驗證性因素分析......30 表 4-5-3 害怕失去權力之驗證性因素分析........30 表 4-5-4 抵抗程度之驗證性因素分析...........31 表 4-5-5 反應成本之驗證性因素分析...........31 表 4-5-6 AI自我效能之驗證性因素分析.........32 表 4-5-7 不確定性之驗證性因素分析...........32 表 4-5-8 相關係數與區別效度分析.............34 表 4-6-1 基本適配度及內部結構適配度..........35 表 4-6-1 基本適配度及內部結構適配度(續).....36 表 4-6-2 整體模型適配度檢定結果.............38 表 4-6-3 本研究假說驗證結果................40 表 4-6-4 反應成本對抵抗程度之控制效果檢驗....41 表 4-6-5 AI自我效能對抵抗程度之控制效果檢驗..41 表 4-6-6 不確定性對抵抗程度之控制效果檢驗.....42 表 4-6-7 本研究假說檢驗彙整表...............42 表 4-7-1 SOBEL TEST 檢驗結果..............43 表 4-7-2 BOOTSTRAP 檢驗結果...............44 表 4-7-3 不同性別之路徑分析結果..............45 |
參考文獻 |
中文文獻 吳明隆,2010,結構方程模式-實務應用秘笈,臺北市:五南出版社。 杜長青,2019,對抗或是對話? AI 未來發展的挑戰與契機,全球政治評論,第66期:27-55。 彭台光,高月慈,林鉦棽,2006,管理研究中的共同方法變異:問題本質,影響,測試和補救,管理學報,23(1), 77-98。 黃仁志,2023,生成式AI的應用,風險與對應政策,經濟前瞻,第208卷:80-86。 黃芳銘,2002,結構芳程模式理論與應用,臺北市:五南出版社。 英文文獻 Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of political economy, 128(6), 2188-2244. Acheampong, R. A., & Cugurullo, F. (2019). Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transportation research part F: traffic psychology and behaviour, 62, 349-375. Adamopoulou, E., & Moussiades, L. (2020). An overview of chatbot technology. In IFIP international conference on artificial intelligence applications and innovations (pp. 373-383). Springer, Cham. Adolphs, R. (2013). The biology of fear. Current biology, 23(2), R79-R93. Anjos, J. F., Dos Santos, M. J. H., Ribeiro, M. T., & Moreira, S. (2019). Connor-Davidson Resilience Scale: validation study in a Portuguese sample. BMJ open, 9(6), e026836. Armstrong, J. S., & Overton, T. S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing Research, 14(3), 396-402. Aydın, Ö., & Karaarslan, E. (2022). OpenAI ChatGPT generated literature review: Digital twin in healthcare. Available at SSRN 4308687. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. Baird, A., & Maruping, L. M. (2021). The Next Generation of Research on IS Use: A Theoretical Framework of Delegation to and from Agentic IS Artifacts. MIS quarterly, 45(1). Bar-Anan, Y., Wilson, T. D., & Gilbert, D. T. (2009). The feeling of uncertainty intensifies affective reactions. Emotion, 9(1), 123. Boss, S. R., Galletta, D. F., Lowry, P. B., Moody, G. D., & Polak, P. (2015). What do systems users have to fear? Using fear appeals to engender threats and fear that motivate protective security behaviors. MIS quarterly, 39(4), 837-864. Chambers, R. S., Rosenstock, S., Lee, A., Goklish, N., Larzelere, F., & Tingey, L. (2018). Exploring the role of sex and sexual experience in predicting American Indian adolescent condom use intention using protection motivation theory. Frontiers in Public Health, 6, 318. Chen, M. F. (2016). Extending the protection motivation theory model to predict public safe food choice behavioural intentions in Taiwan. Food Control, 68, 145-152. Chen, W., & Wellman, B. (2004). The global digital divide–within and between countries. IT & society, 1(7), 39-45. Cheung, K. C., Mak, S. K., & Sit, P. S. (2013). Online reading activities and ICT use as mediating variables in explaining the gender difference in digital reading literacy: Comparing Hong Kong and Korea. The Asia-Pacific Education Researcher, 22, 709-720. Chua, G., Yuen, K. F., Wang, X., & Wong, Y. D. (2021). The determinants of panic buying during COVID-19. International Journal of Environmental Research and Public Health, 18(6), 3247. Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 1-12. Cugurullo, F., & Acheampong, R. A. (2023). Fear of AI: an inquiry into the adoption of autonomous cars in spite of fear, and a theoretical framework for the study of artificial intelligence technology acceptance. AI & SOCIETY, 1-16. De Cremer, D., & Kasparov, G. (2021). AI should augment human intelligence, not replace it. Harvard Business Review, 18, 1. Demlehner, Q., & Laumer, S. (2020). Why context matters: Explaining the digital transformation of the manufacturing industry and the role of the industry’s characteristics in it. Pacific Asia Journal of the Association for Information Systems, 12(3), 3. Deng, M., Zheng, M., & Guinote, A. (2018). When does power trigger approach motivation? Threats and the role of perceived control in the power domain. Social and Personality Psychology Compass, 12(5), e12390. Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A confirmatory factor analysis of the end-user computing satisfaction instrument. MIS quarterly, 453-461. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. Editorials, N. (2023). Tools such as ChatGPT threaten transparent science; here are our ground rules for their use. Nature, 613(612), 10-1038. Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-4), 169-200. Else, H. (2023). Abstracts written by ChatGPT fool scientists, 423-423 Nature, 613(7944). https://doi.org/10.1038/d41586-023-00056-7. Fang, Y. H. (2017). Coping with fear and guilt using mobile social networking applications: Knowledge hiding, loafing, and sharing. Telematics and Informatics, 34(5), 779-797. Fetzer, J. H. (2012). Scientific knowledge: Causation, explanation, and corroboration (Vol. 69). Springer Science & Business Media. Floyd, D. L., Prentice‐Dunn, S., & Rogers, R. W. (2000). A meta‐analysis of research on protection motivation theory. Journal of Applied Social Psychology, 30(2), 407-429. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. Fountaine, T., McCarthy, B., & Saleh, T. (2021). Getting Al to scale. Harvard Business Review, 99(3), 116-123. Gu, S., Wang, F., Patel, N. P., Bourgeois, J. A., & Huang, J. H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in psychology, 10, 781. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). New Jersey: Prentice-Hall.808. Hargittai, E., & Shafer, S. (2006). Differences in actual and perceived online skills: The role of gender. Social Science Quarterly, 87(2), 432-448. Hirschheim, R., & Newman, M. (1988). Information systems and user resistance: theory and practice. The Computer Journal, 31(5), 398-408. Hong, J. W. (2022). I was born to love AI: The influence of social status on AI self-efficacy and intentions to use AI. International Journal of Communication, 16, 20. Hooper, D., Coughlan, J., & Mullen, M. (2008, September). Evaluating model fit: a synthesis of the structural equation modelling literature. In 7th European Conference on research methodology for business and management studies (Vol. 2008, pp. 195-200). Hu, L. (2023). Generative AI and Future. Retrieved on January, 23. Izard, C. E. (2007). Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspectives on Psychological Science, 2(3), 260-280. Ju, Y., Liu, J., Ng, R. M., Liu, B., Wang, M., Chen, W., ... & Zhang, Y. (2021). Prevalence and predictors of post-traumatic stress disorder in patients with cured coronavirus disease 2019 (COVID-19) one month post-discharge. European Journal of Psychotraumatology, 12(1), 1915576. Khasawneh, O. Y. (2018). Technophobia: Examining its hidden factors and defining it. Technology in Society, 54, 93-100. Kim, H. W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 567-582. Kim, J., Yang, K., Min, J., & White, B. (2021). Hope, fear, and consumer behavioral change amid COVID‐19: Application of protection motivation theory. International Journal of Consumer Studies Management, 45(6), 410-417. Kim, S., Jeong, S. H., & Hwang, Y. (2013). Predictors of pro-environmental behaviors of American and Korean students: The application of the theory of reasoned action and protection motivation theory. Science Communication, 35(2), 168-188. Kissinger, H. A., Schmidt, E., & Huttenlocher, D. (2021). The age of AI: and our human future. Hachette UK. Kok, G., Peters, G. J. Y., Kessels, L. T., Ten Hoor, G. A., & Ruiter, R. A. (2018). Ignoring theory and misinterpreting evidence: the false belief in fear appeals. Health Psychology Review, 12(2), 111-125. Kothe, E. J., Ling, M., North, M., Klas, A., Mullan, B. A., & Novoradovskaya, L. (2019). Protection motivation theory and pro‐environmental behaviour: A systematic mapping review. Australian Journal of Psychology, 71(4), 411-432. Kushwaha, A. K., & Kar, A. K. (2021). MarkBot–a language model-driven chatbot for interactive marketing in post-modern world. Information Systems Frontiers, 1-18. Kwak, Y., Ahn, J. W., & Seo, Y. H. (2022). Influence of AI ethics awareness, attitude, anxiety, and self-efficacy on nursing students’ behavioral intentions. BMC nursing, 21(1), 267. Laato, S., Islam, A. N., Farooq, A., & Dhir, A. (2020). Unusual purchasing behavior during the early stages of the COVID-19 pandemic: The stimulus-organism-response approach. Journal of Retailing and Consumer Services, 57, 102224. Lee, J. D. (2002). More than ability: Gender and personal relationships influence science and technology involvement. Sociology of Education, 349-373. Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63, 101410. Lindell, M. K., & Whitney, D. J. (2001). Accounting for common method variance in cross-sectional research designs. Journal of Applied Psychology, 86(1), 114. Lokman, A. S., & Ameedeen, M. A. (2018). Modern chatbot systems: A technical review. InProceedings of the future technologies conference (pp. 1012-1023). Maddux, J. E., & Rogers, R. W. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of Experimental Social Psychology, 19(5), 469-479. Martin, I. M., Bender, H., & Raish, C. (2007). What motivates individuals to protect themselves from risks: The case of wildland fires. Risk Analysis: An International Journal, 27(4), 887-900. Metz, A. (2022). Exciting Ways to Use ChatGPT—From Coding to Poetry. TechRadar. Metz, C. (2022). The new chatbots could change the world. Can you trust them? The New York Times. https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html. Norman, P., Boer, H., Seydel, E. R., & Mullan, B. (2015). Protection motivation theory. Predicting and changing health behaviour: Research and practice with social cognition models, 3, 70-106. Norori, N., Hu, Q., Aellen, F. M., Faraci, F. D., & Tzovara, A. (2021). Addressing bias in big data and AI for health care: A call for open science. Patterns, 2(10). Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146. Osiceanu, M. E. (2015). Psychological implications of modern technologies: “technofobia” versus “technophilia”. Procedia-Social and Behavioral Sciences, 180, 1137-1144. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. Prentice-Dunn, S., & Rogers, R. W. (1986). Protection motivation theory and preventive health: Beyond the health belief model. Health education research, 1(3), 153-161. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. Rahman, M. S., Ko, M., Warren, J., & Carpenter, D. (2016). Healthcare Technology Self-Efficacy (HTSE) and its influence on individual attitude: An empirical study. Computers in Human Behavior, 58, 12-24. Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems. Reed, L. (2022). ChatGPT for Automated Testing: From conversation to code. Sauce Labs. https://saucelabs.com/blog/chatgpt-automated-testing-conversation-to-code Accessed:February 20, 2023. Rippetoe, P. A., & Rogers, R. W. (1987). Effects of components of protection-motivation theory on adaptive and maladaptive coping with a health threat. Journal of Personality and Social Psychology, 52(3), 596. Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The Journal of Psychology, 91(1), 93-114. Rogers, R. W., & Prentice-Dunn, S. (1997). Protection motivation theory. Saguy, T., & Kteily, N. (2017). Power, negotiations, and the anticipation of intergroup encounters. In European Review of Social Psychology: Volume 25 (pp. 107-141). Routledge. Sheeran, P., Harris, P. R., & Epton, T. (2014). Does heightening risk appraisals change people’s intentions and behavior? A meta-analysis of experimental studies. Psychological Bulletin, 140(2), 511. Stokel-Walker, C. J. N. (2023). ChatGPT listed as author on research papers: many scientists disapprove. Nature, 613, 620–621. https://doi.org/10.1038/d41586-023- 00107-z. Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments, 1-14. Sturm, R. E., & Antonakis, J. (2015). Interpersonal power: A review, critique, and research agenda. Journal of Management, 41(1), 136-163. Tanner Jr, J. F., Hunt, J. B., & Eppright, D. R. (1991). The protection motivation model: A normative model of fear appeals. Journal of Marketing, 55(3), 36-45. Terwiesch, C. (2023). Would chat GPT3 get a Wharton MBA. A prediction based on its performance in the operations management course. Wharton: Mack Institute for Innovation Management/University of Pennsylvania/School Wharton. Teubner, T., Flath, C. M., Weinhardt, C., van der Aalst, W., & Hinz, O. (2023). Welcome to the era of chatgpt et al. the prospects of large language models. Business & Information Systems Engineering, 65(2), 95-101. Tlili, A., Shehata, B., Adarkwah, M. A., Bozkurt, A., Hickey, D. T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learning Environments, 10(1), 15. Tung, L. (2023). ChatGPT can write code. Now researchers say it’s good at fixing bugs, too. ZDNet. https://www.zdnet.com/article/chatgpt-can-write-code-now-researchers-say-its-good-at-fixing-bugs-too/ Accessed: February 29, 2023. Turja, T., Rantanen, T., & Oksanen, A. (2019). Robot use self-efficacy in healthcare work (RUSH): development and validation of a new measure. AI & SOCIETY, 34(1), 137-143. Venkatesh, V., & Sykes, T. A. (2013). Digital divide initiative success in developing countries: A longitudinal field study in a village in India. Information Systems Research, 24(2), 239-260. Verkijika, S. F. (2018). Understanding smartphone security behaviors: An extension of the protection motivation theory with anticipated regret. Computers & Security, 77, 860-870. Weissglass, D. E. (2022). Contextual bias, the democratization of healthcare, and medical artificial intelligence in low‐and middle‐income countries. Bioethics, 36(2), 201-209. Wisse, B., Rus, D., Keller, A. C., & Sleebos, E. (2019). “Fear of losing power corrupts those who wield it”: the combined effects of leader fear of losing power and competitive climate on leader self-serving behavior. European Journal of Work and Organizational Psychology, 28(6), 742-755. Wu, Y., Stanton, B. F., Li, X., Galbraith, J., & Cole, M. L. (2005). Protection motivation theory and adolescent drug trafficking: relationship between health motivation and longitudinal risk involvement. Journal of Pediatric Psychology, 30(2), 127-137. Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. Computers and Education: Artificial Intelligence, 3, 100061. Zhang, Z., Tian, R., & Ding, Z. (2023). Trep: Transformer-based evidential prediction for pedestrian intention with uncertainty. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 37, No. 3, pp. 3534-3542). Zhao, L., Mao, H., Compton, B. J., Peng, J., Fu, G., Fang, F., ... & Lee, K. (2022). Academic dishonesty and its relations to peer cheating and culture: A meta-analysis of the perceived peer cheating effect. Educational Research Review, 36, 100455. Zhao, S., Ye, B., Wang, W., & Zeng, Y. (2022). The intolerance of uncertainty and “untact” buying behavior: The mediating role of the Perceived Risk of COVID-19. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信