§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1902202517163100
DOI 10.6846/tku202500098
論文名稱(中文) 3D列印蒸汽腔體
論文名稱(英文) 3D printing vapor chamber
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 113
學期 1
出版年 114
研究生(中文) 徐劭齊
研究生(英文) Shao-Chi Hsu
學號 612370030
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2025-01-10
論文頁數 53頁
口試委員 指導教授 - 康尚文(swkang3114@gmail.com)
口試委員 - 陳育堂
口試委員 - 蔡孟昌
關鍵字(中) 3D列印
蒸汽腔體
三重週期性最小曲面
關鍵字(英) Additive Manufacturing
Vapor Chamber
Triply Periodic Minimal Surfaces
第三語言關鍵字
學科別分類
中文摘要
本研究利用金屬3D列印技術設計並一體成形製造蒸汽腔體,材料採用 SUS316L,腔體尺寸為 62.5mm × 62.5mm × 5mm。毛細結構選用 TPMS Gyroid,並設定兩種孔隙率(30%、60%)及三種充填率(100%、150%、200%),以探討其在不同加熱功率(20W~150W)下的熱性能表現。
在製造過程中,針對3D列印方式進行試驗與改進,並執行後處理、洩漏測試及可靠性測試。結果顯示,所製造的蒸汽腔體具備良好的緻密度與結構完整性,且能夠長時間穩定運行,驗證了一體成形製造的可行性。
可靠性測試結果表明,3D列印製造的蒸汽腔體需經過多次實驗,才能達到最佳性能。在熱性能方面,孔隙率60%的腔體展現較低的熱阻與更高的熱負荷能力。充填率方面,100%充填率在低加熱功率下具備較低熱阻,而200%充填率則能承受更高的熱負荷,150%充填率的表現則介於兩者之間。
英文摘要
This study utilizes metal 3D printing technology to design and manufacture vapor chambers as a single integrated structure. The material used is SUS316L, and the chamber dimensions are 62.5mm × 62.5mm × 5mm. A TPMS Gyroid capillary structure is selected, with two porosity levels (30% and 60%) and three filling ratios (100%, 150%, and 200%) to investigate thermal performance under different heating power levels (20W~50W).
    During the manufacturing process, various 3D printing methods were tested and optimized, followed by post-processing, leakage tests, and reliability assessments. The results indicate that the fabricated vapor chambers exhibit excellent density and structural integrity, ensuring long-term stable operation and confirming the feasibility of integrated manufacturing.
    Reliability test results show that 3D-printed vapor chambers require multiple experimental optimizations to achieve optimal performance. In terms of thermal performance, vapor chambers with 60% porosity demonstrate lower thermal resistance and higher heat load capacity. Regarding the filling ratio, a 100% filling ratio provides lower thermal resistance at low heating power, whereas a 200% filling ratio supports higher heat loads. The performance of the 150% filling ratio falls between the two.
第三語言摘要
論文目次
誌謝	
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VI
表目錄	IX
符號索引	X
1 第一章 緒論	1
1.1 研究背景	1
1.2 研究動機	2
1.3 研究目的	2
2 第二章 文獻回顧	3
2.1 蒸汽腔體介紹	3
2.1.1 蒸汽腔體工作原理	3
2.2 應用領域	4
2.3 影響性能的關鍵	4
2.3.1 工作流體	4
2.3.2 充填率	5
2.3.3 毛細結構	6
2.4 金屬3D列印	9
2.4.1 3D列印介紹	9
2.4.2 選擇性雷射熔融(Selective Laser Melting ,SLM)	10
2.4.3 三重週期性最小曲面(Triply Periodic Minimal Surfaces)	11
2.4.4 金屬3D列印應用	12
3 第三章 製作與實驗設計	18
3.1 蒸汽腔體設計	18
3.1.1 設計理念	18
3.1.2 蒸汽腔體設計	18
3.1.3 毛細結構設計	20
3.2 蒸汽腔體印製	22
3.2.1 3D列印蒸汽腔體	22
3.2.2 毛細結構印製	26
3.3 後處理	27
3.3.1 研磨	27
3.4 洩漏測試	28
3.5 工作流體充填	29
3.6 實驗設備	30
3.6.1 實驗平台	30
3.6.2 溫度測量點	31
3.6.3 實驗設備	33
3.7 性能測試	34
3.7.1 實驗參數	34
3.7.2 實驗步驟	35
4 第四章 蒸汽腔體性能測試	36
4.1 蒸汽腔體參數	36
4.2 溫度分布變化	37
4.3 熱阻分析	41
4.4 可靠性分析	44
5 第五章 總結	49
6 參考文獻	51

圖目錄
圖 2 1蒸汽腔體工作原理示意圖	3
圖 2 2 熱管常見毛細結構(a)燒結 (b)溝槽 (c)網狀	6
圖 2 3 (a) SLA示意圖 (b) FDM示意圖	9
圖 2 4 SLS製程示意圖	10
圖 2 5 SLM建構流程	11
圖 2 6 TPMS結構 (a) Gyroid (b) Schwarz P (c) Diamond	12
圖 2 7溝槽式平板熱管	13
圖 2 8 Ω型凹槽的小型熱管	14
圖 2 9 左)有間隔震盪熱管,右)無間隔震盪熱管	14
圖 2 10 蒸氣腔體結構示意圖	15
圖 2 11(a)蒸汽腔體爆炸圖(b)實體圖(c)溝槽多孔複合結構 (d)溝槽結構	16
圖 2 12 (a)蒸汽腔體圖(b)TPMS Gyroid結構(c)溝槽多孔結構(d)多孔結構	16
圖 2 13 複合多孔結構示意圖	17
圖 2 14 左)AMVC右)AMVC-H	17
圖 3 1 (a)蒸汽腔體設計(b)蒸汽腔體實體(c)蒸發端及支撐柱結構(d)支撐柱分布	19
圖 3 2 繪製晶格結構之程式	21
圖 3 3 TPMS Gyroid毛細結構繪製圖	21
圖 3 4 孔隙率計算	22
圖 3 5 AMP-160金屬列印機	23
圖 3 6 蒸汽腔體上壁崩落	25
圖 3 7 蒸汽腔體明顯變形	25
圖 3 8 梯形支撐	25
圖 3 9 垂直列印蒸汽腔體	26
圖 3 10 (a)毛細晶格 (b)30%孔隙率 (c) 60%孔隙率	26
圖 3 11 (a)研磨前 (b)研磨後	27
圖 3 12測漏設備	28
圖 3 13 (a) 0%充填率 (b) 100%充填率(c)150%充填率(d)200%充填率	30
圖 3 14 實驗平台示意圖	31
圖 3 15 實驗平台實際圖	31
圖 3 16 冷凝器溫度測量點	32
圖 3 17 蒸汽腔體溫度測量點(a)蒸發端(b)冷凝端	32
圖 3 18 電源供應器	33
圖 3 19 數據擷取機	33
圖 3 20 加熱器	34
圖 4 1 P60F200溫度與時間變化圖	37
圖 4 2 P60F150溫度與時間變化圖	38
圖 4 3 P60F100溫度與時間變化圖	38
圖 4 4 P60三種蒸汽腔體溫度變化圖	39
圖 4 5 P30F200溫度與時間變化圖	40
圖 4 6 P60F200及P30F200溫度變化圖	40
圖 4 7 P60三種充填率之熱阻比較	41
圖 4 8 P60F200&P30F200之熱阻曲線比較	43
圖 4 9 P60F150實驗次數&溫度曲線	44
圖 4 10 P60F150實驗次數&熱阻	45
圖 4 11 P60F200前期溫度曲線	46
圖 4 12 P60F200後期溫度曲線	46
圖 4 13 P60F200前期熱阻	47
圖 4 14 P60F200後期熱阻	47
圖 4 15 P60F150連續實驗溫度變化圖	48

表目錄
表 2 1工作流體適用溫度及材料相容性	5
表 3 1蒸汽腔體規格	19
表 3 2 3D列印機台規格	23
表 3 3 列印參數	23
表 3 4 SUS316L成分表	24
表 3 5 粗糙度參數	28
表 3 6 蒸汽腔體測漏	29
表 3 7 充填率&充填量	30
表 3 8 蒸汽腔體實驗參數	34
表 4 1 蒸汽腔體簡稱	36
表 4 2 P60三種蒸汽腔體熱阻	42
表 4 3 P60F200&P30F200熱阻值	43

參考文獻
[1]	S. Lin, D. Lin, V. Lin, T. Shih, A. Kang, and Y. P. Wang,“High Power Advanced Package with Water Cooling System Evaluation and Optimization,” InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,ITHERM, vol. 2023-May,2023.
[2]	P. Y. Lin, S. L. Kuo, K. Yan, W. M. Chen, and M. D. D. Liao,“ Advanced Thermal Integration for HPC Packages with Two-Phase Immersion Cooling,” Proceedings - Electronic Components and Technology Conference,vol. 2022-May: Institute of Electrical and Electronics Engineers Inc., pp. 566-573,2022.
[3]	M. C. Tsai, S. W. Kang, and K. Vieira De Paiva,“Experimental studies of thermal resistance in a vapor chamber heat spreader,”Appl Therm Eng,vol. 56, no. 1-2, pp. 38-44, 2013.
[4]	D. A. Reay and P. Kew,“Heat pipes, 5th ed,”ed: Butterworth-Heinemann,United Kingdom, 2006.
[5]	Y. Liu, X. Han, C. Shen, F. Yao, and M. Zhang,“Experimental study on the evaporation and condensation heat transfer characteristics of a vapor chamber,” Energies, vol. 12, no. 1, 2019.
[6]	D. Li, Z. Huang, X. Liao, S. Zu, and Q. Jian,“Heat and mass transfer characteristics of ultra-thin flat heat pipe with different liquid filling rates,” Appl Therm Eng, Article vol. 199, 2021.
[7]	黃啟堯,“蒸汽腔體均熱片之熱性能分析,”碩士, 機械與機電工程學系碩士班, 淡江大學, 新北市, 2008. 
[8]	林冠穎,“蒸汽腔體均溫板熱性能實驗探討,”碩士, 機械與機電工程學系碩士班, 淡江大學, 新北市, 2013. 
[9]	Y. Tang, D. Yuan, L. Lu, and Z. Wang,“A multi-artery vapor chamber and its performance,”Appl Therm Eng, vol. 60, no. 1-2, pp. 15-23, 2013.
[10]	Y. T. Chen, S. W. Kang, Y. H. Hung, C. H. Huang, and K. C. Chien, “Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures,”Appl Therm Eng, vol. 51, no. 1-2, pp. 864-870, 2013.
[11]	D. Deng, Q. Huang, Y. Xie, X. Huang, and X. Chu,“Thermal performance of composite porous vapor chambers with uniform radial grooves,”Appl Therm Eng, vol. 125, pp. 1334-1344, 2017.
[12]	Y. Luo, W. Liu, and G. Huang,“Fabrication and experimental investigation of the bionic vapor chamber,”Appl Therm Eng, vol. 168, 2020.
[13]	J. Zeng, S. Zhang, G. Chen, L. Lin, Y. Sun, L. Chuai, and W. Yuan, “Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array,”Appl Therm Eng, vol. 130, pp. 185-194, 2018.
[14]	J. Velardo, A. Date, R. Singh, J. Nihill,T. H. Phan, and M. Takahashi,“Experimental investigation of a vapour chamber heat spreader with hybrid wick structure,”Int. J. Therm. Sci., vol. 140, pp. 28-35, 2019.
[15]	C. Liu, D. Hu, Q. li, X. Chen, Z. Zhang, and F. Zhou,“Vapor chamber with two-layer liquid supply evaporator wick for high-heat-flux devices,”Appl Therm Eng, vol. 190, 2021.
[16]	C. Yan, H. Li, Y. Tang, X. Ding, X. Yuan, Y. Liang, and S. Zhang,“A novel ultra-thin vapor chamber with composite wick for portable electronics cooling,”Appl Therm Eng, vol. 226, 2023.
[17]	X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui,“3D printing of polymer matrix composites: A review and prospective,”Compos Part B: Eng, Review vol. 110, pp. 442-458, 2017.
[18]	W. E. Frazier,“Metal additive manufacturing: A review,”J Mater Eng Perform, Review, vol. 23, no. 6, pp. 1917-1928, 2014.
[19]	C. Y. Yap, C. K. Chua, Z. L.Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, "Review of selective laser melting: Materials and applications," Appl. Phys. Rev., Review, vol. 2, no. 4, 2015.
[20]	E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz, and A. V. Borille,“Additive Manufacturing of Titanium Alloy for Aircraft Components,”in Procedia CIRP, B. Denkena, Ed., vol. 35: Elsevier B.V., pp. 55-60, 2015.
[21]	S. L. Sing, J. An, W. Y. Yeong, and F. E. Wiria,“Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs,”J. Orthop. Res., Review, vol. 34, no. 3, pp. 369-385, 2016.
[22]	H. G. von Schnering and R. Nesper,“Nodal surfaces of Fourier series: Fundamental invariants of structured matter,”Z. Physik B - Condensed Matter, vol. 83, no. 3, pp. 407-412, 1991.
[23]	Z. Gan, M. D. Turner, and M. Gu,“Biomimetic gyroid nanostructures exceeding their natural origins,”Sci. Adv., vol. 2, no. 5, 2016.
[24]	L. Han and S. Che,“An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems,”Adv Mater, Review, vol. 30, no. 17, 2018.
[25]	B. W. Reynolds, C. J. Fee, K. R. Morison, and D. J. Holland,“Characterisation of Heat Transfer within 3D Printed TPMS Heat Exchangers,”Int. J. Heat Mass Transf., vol. 212, 2023.
[26]	O. Al-Ketan, R. Rowshan, and R. K. Abu Al-Rub,“Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials,”Addit. Manuf., vol. 19, pp. 167-183, 2018.
[27]	D. Jafari and W. W. Wits,“The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review,”Renewable Sustainable Energy Review, vol. 91, pp. 420-442, 2018.
[28]	M. Yun, W. T. Hsu, D. I. Shim, J. Nam, J. H. Heo, J. Y. Song, K. T. Park, D. H. Lee, D. H. Lee, and H. H. Cho,“Design and fabrication of heat pipes using additive manufacturing for thermal management,”Appl Therm Eng, vol. 236, 2024.
[29]	J. Zhou, L. Teng, Y. Shen, and Z. Jin,“Simulation of, Optimization of, and Experimentation with Small Heat Pipes Produced Using Selective Laser Melting Technology,”Mater.,vol. 16, no. 21, 2023.
[30]	K. L. Chen, K. Y. Luo, P. P. Gupta, and S. W. Kang,“SLM Additive Manufacturing of Oscillating Heat Pipe,”Sustainability, vol. 15, no. 9, 2023.
[31]	S. Ozguc, S. Pai, L. Pan, P. J. Geoghegan, and J. A. Weibel,“Experimental demonstration of an additively manufactured vapor chamber heat spreader,” InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM, pp. 416-422, 2019.
[32]	Z. Gu, H. Liu, K. Yang, Q. Wang, H. Xu, and L. Zhang,“Enhancing heat transfer performance in 3D-printed integrated vapor chamber using composite structures,”Appl Therm Eng, vol. 234, 2023.
[33]	Z. Gu, K. Yang, H. Liu, X. Zhou, H. Xu, and L. Zhang,“Enhancing heat transfer performance of aluminum-based vapor chamber with a novel bionic wick structure fabricated using additive manufacturing,”Appl Therm Eng, vol.247, 2024.
[34]	X. Meng, S. Tan, Z. Yuan, Y. Zhang, and L. Chen,“Experimental study on the heat transfer performance of a vapour chamber with porous wick structures printed via metallic additive manufacturing,”Int. Commun. Heat Mass Transf., vol. 140, 2023.
[35]	P. Ekade and S. Krishnan,“Fluid flow and heat transfer characteristics of octet truss lattice geometry,”Int. J. Therm. Sci. vol. 137, pp. 253-261, 2019.
[36]	K. Dutkowski, M. Kruzel, and K. Rokosz,“Review of the State-of-the-Art Uses of Minimal Surfaces in Heat Transfer,”Energies, vol. 15, no. 21, 2022.
[37]	陳冠霖,“3D列印震盪式熱管,”碩士, 機械與機電工程學系碩士班, 淡江大學, 2022.

論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信