系統識別號 | U0002-1901200915440000 |
---|---|
DOI | 10.6846/TKU.2009.00657 |
論文名稱(中文) | 離心式壓縮機喘振之適應控制-函數近似法 |
論文名稱(英文) | Adaptive Control for Surge of Centrifugal Compressors - A Function Approximation Approach |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 航空太空工程學系碩士班 |
系所名稱(英文) | Department of Aerospace Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 97 |
學期 | 1 |
出版年 | 98 |
研究生(中文) | 李志軒 |
研究生(英文) | Chih-Hsuan Lee |
學號 | 694370809 |
學位類別 | 碩士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2009-01-06 |
論文頁數 | 66頁 |
口試委員 |
指導教授
-
田豐
委員 - 王信雄 委員 - 蕭照焜 |
關鍵字(中) |
離心式 壓縮機 噴射發動機 喘振 適應控制 |
關鍵字(英) |
Centrifugal Compressor Jet engine Surge Adaptive control |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
流場在離心式壓縮機內的不穩定現象,如喘振是在發動機運轉下所造成主要的不穩定,由於這種不穩定會因造成渦輪發動機能量損失而導致運作效能降低,嚴重的話會因震動而造成結構上的破壞。此研究的目的是在離心式發動機中,利用軸承扭力的輸入來做控制,藉此用函數近似法控制器來控制上述的不穩定現象,並藉由壓縮機的數學模型來模擬真實的壓縮機系統。 |
英文摘要 |
Compressor instabilities in fluid field such as surge is the main instabilities phenomena in operation of jet engine. It reduces the performance by energy loss and causes structural damage by vibration due to the instabilities. In this study, we use drive torque actuation in active surge control of centrifugal compressor by function approximation approach to design. The proposed method is simulated on a compressor model using a real compression system. |
第三語言摘要 | |
論文目次 |
Contents Acknowledgement i Chinese Abstract ii Abstract iii Nomenclature iv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Centrifugal Compressor . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Impeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Previous Work on Modelling of Compression Systems . . . . . . . . 3 1.4 Stability of Compression Systems . . . . . . . . . . . . . . . . . . . 5 1.4.1 Surge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . 6 2 Mathematical Model 7 2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Nondimensional Plant . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 A Review of the Function Approximation Technique 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 Function Approximation with the Orthonormal Series . . . . 13 3.1.2 Function Approximation with the Fourier Series . . . . . . . 15 4 Adaptive Controller for the Compression System 17 4.1 Parameterized System Equilibrium . . . . . . . . . . . . . . . . . . 17 4.2 Surge Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Numerical Results 32 5.1 case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Conclusion 39 A Modelling for a Centrifugal Compressor 40 A.1 Impeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A.2 Diffuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.3 Energy Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.3.1 Ideal Energy Transfer . . . . . . . . . . . . . . . . . . . . . . 42 A.3.2 Incidence Losses . . . . . . . . . . . . . . . . . . . . . . . . . 43 A.3.3 Frictional Losses . . . . . . . . . . . . . . . . . . . . . . . . 45 A.3.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A.4 Energy Transfer and Pressure Rise . . . . . . . . . . . . . . . . . . 47 A.5 Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 B Nondimensional Plant 49 B.1 Conservation of Mass in the Plenum . . . . . . . . . . . . . . . . . 49 B.2 Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 B.3 Shafted Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 C Find c and Values 54 C.1 when r2 + eq > 0 ( > 0) . . . . . . . . . . . . . . . . . . . . . . . 54 C.2 When r2 + eq < 0 ( < 0) . . . . . . . . . . . . . . . . . . . . . . . 55 Bibliography 56 List of Tables 1.1 Type of machine described by the model. A: Axial type compressor, C: Centrifugal compressor, S: Surge and R: Rotating stall . . . . . . 4 List of Figures 1.1 Profile impeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Diagram of centrifugal compressor fitted with a volute . . . . . . . 3 1.3 Compressor map with deep surge cycle . . . . . . . . . . . . . . . . 6 2.1 Equivalent compressor system . . . . . . . . . . . . . . . . . . . . . 7 5.1 Phase portrait of pressure-flow map . . . . . . . . . . . . . . . . . . 33 5.2 Pressure rise versus time . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Mass flow versus time . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 Angular velocity of compressor spool versus time . . . . . . . . . . 35 5.5 Control effort versus time . . . . . . . . . . . . . . . . . . . . . . . 35 5.6 Phase portrait of pressure-flow map . . . . . . . . . . . . . . . . . . 36 5.7 Pressure rise versus time . . . . . . . . . . . . . . . . . . . . . . . . 37 5.8 Mass flow versus time . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.9 Angular velocity of compressor spool versus time . . . . . . . . . . 38 5.10 Control effort versus time . . . . . . . . . . . . . . . . . . . . . . . 38 A.1 Velocity triangle at inducer, [19]. . . . . . . . . . . . . . . . . . . . 40 A.2 Velocity triangle at impeller tip, [15]. . . . . . . . . . . . . . . . . . 41 A.3 Incidence angles at inducer, [3]. . . . . . . . . . . . . . . . . . . . . 44 A.4 Incidence angles at diffuser, [3]. . . . . . . . . . . . . . . . . . . . . 45 |
參考文獻 |
[1] F. Willems and B. de Jager, “Modeling and control of compressor flow instabilities,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 8–18, 1999. [2] J. T. Gravdahl, O. Egeland, and S. O. Vatland, “Drive torque actuation in active surge control of centrifugal compressors,” Automatica, vol. 38, pp. 1881–1893, 2002. [3] J. T. Gravdahl and O. Egeland, Compressor Surge and Rotating Stall: Modeling and Control. London: Springer Verlag, 1999. [4] B. Bøhagen, “Active surge control of centrifugal compression systems - theoretical and experimental results of drive actuation,” Ph.D. dissertation, Norwegian University, June 2007. [5] J. D. Mattingly, Elements of Gas Turbine Propulsion, international ed., J. P. Holman and J. R. Lloyd, Eds. New York: McGraw-Hill, 1992. [6] S.-C. Lee, “An adaptive control for rotating stall and surge of jet engines- a function approximation aproach,” Master’s thesis, TamKang University, January 2005. [7] J. D. Anderson, Jr., Modern Compressible Flow with Historical Perspective, secnd ed. McGraw-Hill. [8] ——, Fundanmentals of Aerodynamics, 3rd ed. McGraw-Hill. [9] E. M. Greitzer, “Surge and rotating stall in axial flow compressor: Part 1 - theoretical compression system model,” Journal of Engineering for Power, vol. 98, pp. 190–198, 1976. [10] K. E. Hansen, P. Jørgensen, and P. S. Larsen, “Experimental and theoretical study of surge in a small centrifugal compressor,” Journal of Fluids Engineering, vol. 103, pp. 391–395, 1981. [11] F. K. Moore and E. M. Greitzer, “A theory of post-stall transients in a axial compressor systems: Part 1 - development of equations,” Journal of Engineering for Gas Turbines and Power, vol. 108, pp. 68–76, 1986. [12] D. A. Fink, N. A. Cumpsty, and E. M. Greitzer, “Surge dynamics in a free-spool centrifugal compressor system,” Journal of Turbomachinery, vol. 114, pp. 321–332, 1992. [13] K. K. Botros, “Transient phenomena in compressor stations during surge,” Journal of Engineering for Gas Turbines and Power, vol. 116, no. 1, pp. 133–142, 1994. [14] O. O. Badmus, K. M. Eveker, and C. N. Nett, “Control-oriented high-frequency turbomachinery modeling: General 1d model development,” Journal of Turbomachinery, vol. 117, no. 320-335, 1995. [15] J. T. Gravdahl and O. Egeland, “Speed and surge control for a low order centrifugal compressor model,” in IEEE International Conference on Control Applications, Hartford, CT, October 1997, pp. 344–349. [16] H. Li, A. Leonessa, and W. M. Haddad, “Globally stabilizing controllers for a centrifugal compressor model with spooldynamics,” in Proceeding of the American Control Conference, Philadelphia, Pennsylvania, June 1998, pp. 2160–2164. [17] A. Leonessa, W. M. Haddad, and H. Li, “Globally stabilizing switching controllers for a centrifugal compressor model with spool dynamics,” IEEE Transactions on Automatic Control, vol. 8, no. 3, pp. 474–482, 2000. [18] B. Bøhagen and J. T. Gravdahl, “Active control of compression systems using drive torque; a backstepping approach,” in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, December 2005, pp. 2493–2498. [19] J. T. Gravdahl, Member, IEEE, O. Egeland, Member, and IEEE, “Centrifugal compressor surge and speed control,” IEEE Transactions on Control Systems Technology, vol. 7, no. 5, pp. 567–579, 1999. [20] A. Leonessa, W. M. Haddad, and V. Chellaboina, Hierarchical Nonlinear Switching Control Design with Applications to Propulsion Systems, M.Thoma, Ed. London: London: Springer Verlag, 2000. [21] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York: McGraw-Hill, 1972. [22] A.-C. Huang and Y.-S. Kuo, “A model reference adaptive control scheme for uncertain non-autonomous systems,” Journal of the Chinese Society of Mechanical Engineers, vol. 22, no. 6, pp. 537–544, 2001. 58 [23] Y.-S. Kuo, “A study of adaptive control for uncertain nonautonomous system,” Ph.D. dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan, 2001. [24] A.-C. Huang and Y.-S. Kuo, “Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252–264, 2001. [25] M.-C. Chien and A.-C. Huang, “Adaptive impedance control of robot manipulators based on function approximation technique,” Robotica, vol. 22, pp. 395–403, 2004. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信