§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1807202210212200
DOI 10.6846/TKU.2022.00452
論文名稱(中文) 基於B樣條模型的加速應力驗收試驗
論文名稱(英文) Accelerated Stress Acceptance Test Based on B-spline Model
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 數學學系數學與數據科學碩士班
系所名稱(英文) Master's Program, Department of Mathematics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 110
學期 2
出版年 111
研究生(中文) 雷奕賢
研究生(英文) I-Hsien Lei
學號 610190042
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2022-07-01
論文頁數 31頁
口試委員 指導教授 - 蔡志群(141400@mail.tku.edu.tw)
口試委員 - 林千代
口試委員 - 彭健育
關鍵字(中) 最佳應力驗收時間
品質特徵值
B樣條衰變模型
關鍵字(英) Accelerated-stress acceptance time
Quality characteristics
B-spline degradation model
第三語言關鍵字
學科別分類
中文摘要
隨著技術水準提升,現今的科技產品具有高可靠度的特性,若想要在給定的試驗時間內,觀測到受測樣本的失效資料進行驗收,就顯得相對困難。此時,可將受測樣本置於較高的環境應力之下,以加速受測樣本衰變,進而縮短產品的驗收時間,此即為加速應力驗收試驗 (accelerated-stress acceptance test)。本文以一組晶片電阻器衰變資料為動機例子,使用B樣條建構其衰變模型,來描述電阻值相對變化率的衰變路徑,進而求得最佳加速應力驗收時間。此外,在給定信心水準下,以拔靴法 (bootstrap method) 求得最佳加速應力驗收時間的信賴區間。最後,進行模擬分析探討模型誤判,對於參數估計準確度與精確度的影響。
英文摘要
With the improvement of technology, it is difficult to observe the time-to-failure data of the tested samples for conducting acceptance test within a given test time. In such cases, tested samples can be placed in a high stress environment to accelerate the decay of the products so as to shorten the acceptance time. This is called the accelerated-stress acceptance test. Motivated by a resistor data, a B-spline degradation model was constructed to describe the degradation paths of the relative changes in the resistance of the resistors. Then, the optimal accelerated-stress acceptance testing time can be obtained, and the corresponding bootstrap confidence interval can be evaluated. Finally, the impact of model mis-specification on parameter estimates was addressed through simulation studies.
第三語言摘要
論文目次
1 緒論	1
1.1前言	1
1.2 文獻探討	3
1.2.1 衰變模型	3
1.2.2	B樣條	5
1.2.3	拔靴法	9
1.3 研究動機與目的	11
1.4 研究架構	15
2 最佳加速應力驗收試驗	16
2.1 B樣條衰變模型	16
2.2 最佳驗收時間	18
3 資料與模擬分析	20
3.1 資料分析	20
3.2 模擬分析	24
4 結論與未來發展	27
參考文獻	28

參考文獻
1.	Berlicki, T. M. (1985). “Voltage degradation model of thin film capacitors,” Active and Passive Electronic Components, 12, 63-70.
2.	Bhuyan, P., Sengupta, D. (2017). “Estimation of reliability with semi-parametric modeling of degradation,” Computational Statistics and Data Analysis, 115, 172-185.
3.	Brent, R. P. (1973). Algorithms for Minimization Without Derivatives. Englewood Cliffs, N.J.: Prentice-Hall.
4.	Byrd, R. H., Mary E. H., Nocedal, J. (1999). “An interior point algorithm for large-scale nonlinear programming,” SIAM Journal on Optimization, 9, 877-900.
5.	Cox, M. G. (1972) “The numerical evaluation of B-spline,” IMA Journal of Applied Mathematics, 10, 134-149.
6.	de Boor, C. (1972). “On calculating with B-splines,” Journal of Approximation Theory, 6, 50-62.
7.	de Boor, C (1978). A practical guide to splines. New York: Springer-Verlag.
8.	Doksum, K. A., Hóyland, A. (1992). “Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution,” Technometrics, 34, 74-82.
9.	Efron ,B (1979) “Bootsrap methods: another look at the jackknife,” The Annals of Statistics, 7, 1-26.
10.	Efron, B., Tibshirani, R. J. (1994). An Introduction to the Bootstrap. United States : CRC press.
11.	Forsythe, G. E., Malcolm, M. A., Moler, C. B. (1976). Computer Methods for Mathematical Computations. Englewood Cliffs, N.J.: Prentice-Hall.
12.	Leitenstorfer, F., Tutz, G. (2007). “Generalized monotonic regression based on B-splines with an application to air pollution data,” Biostatistics, 8, 654-673.
13.	Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. New York : John Wiley and Sons.
14.	Eilers, P. H., Marx, B. D. (1996). “Flexible smoothing with B-splines and penalties,” Statistical Science, 11, 89-121.
15.	Peng, C. Y., Tseng, S. T. (2009). “Mis-specification analysis of linear degradation models,” IEEE Transactions on Reliability, 58, 444-455.
16.	Powell, M. J. D. (1978). “A fast algorithm for nonlinearly constrained optimization calculations,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics, 630, 144-157.
17.	Shang, H. L. (2018). “Bootstrap methods for stationary functional time series,” Statistics and Computing, 28, 1-10.
18.	Shiau, J. J. H., Lin, H. H. (1999). “Analyzing accelerated degradation data by nonparametric regression,” IEEE Transactions on Reliability, 48, 149-158.
19.	Tsai, C. C., Balakrishnan, N., Lin, C. T. (2015). “Optimal design for accelerated-stress acceptance test based on Wiener process,” IEEE Transactions on Reliability, 64, 603-612.
20.	Tsai, Y, T., Chen, C. C., Liao, Z. X. (2012). “A study of performance degradation predictions and fault diagnoses for mechanical systems,” Journal of Technology, 27, 121-130.
21.	Tseng, S. T., Yu, H. F. (1997). “A termination rule for degradation experiments,” IEEE Transactions on Reliability, 46, 130-133.
22.	Wang, X. (2009). “Nonparametric estimation of the shape function in a gamma process for degradation data,” Canadian Journal of Statistics, 37, 102-118.
23.	Xie, Y., King, C. B., Hong, Y., Yang, Q. (2018). “Semiparametric models for accelerated destructive degradation test data analysis,” Technometrics, 60, 222-234.
24.	Xu, Z., Hong, Y., Jin, R. (2016). “Nonlinear general path models for degradation data with dynamic covariates,” Applied Stochastic Models in Business and Industry, 32, 153-167.
25.	Yu, H. F., Yu, W. C. (2006). “Optimal classification of highly reliable products with a linearized degradation model,” Journal of the Chinese Institute of Industrial Engineers, 23, 382-392.
26.	Zhu, S. (2007). “Bootstrap methods with applications in multivariate analysis,” Dissertation Abstracts International, 68, 2436-2546.
27.	林琮庭 (2013). “加速應力允收試驗之最佳化設計”,淡江大學數學學系碩士論文。
28.	陳怡芬 (2020). “B樣條模型之EVA膜交聯度最佳層壓試驗”,淡江大學數學學系碩士論文。
29.	羅月卿 (2021). “基於半參數模型下之太陽能EVA膜最佳層壓試驗”,淡江大學數學學系碩士論文。
論文全文使用權限
國家圖書館
同意無償授權國家圖書館,書目與全文電子檔於繳交授權書後, 於網際網路立即公開
校內
校內紙本論文立即公開
同意電子論文全文授權於全球公開
校內電子論文立即公開
校外
同意授權予資料庫廠商
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信