系統識別號 | U0002-1807202210085900 |
---|---|
DOI | 10.6846/TKU.2022.00451 |
論文名稱(中文) | 累積曝曬模型之逐步應力加速破壞衰變試驗 |
論文名稱(英文) | Step Stress Accelerated Destructive Degradation Test Based on Cumulative Exposure Model |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 數學學系數學與數據科學碩士班 |
系所名稱(英文) | Master's Program, Department of Mathematics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 110 |
學期 | 2 |
出版年 | 111 |
研究生(中文) | 游景涵 |
研究生(英文) | Jing-Han You |
學號 | 610190125 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2022-07-01 |
論文頁數 | 36頁 |
口試委員 |
指導教授
-
蔡志群(chihchuntsai@mail.tku.edu.tw)
口試委員 - 林千代(chien@mail.tku.edu.tw) 口試委員 - 彭健育(chienyu@stat.sinica.edu.tw) |
關鍵字(中) |
逐步應力加速破壞衰變試驗 累積曝曬模型 最佳試驗配置 |
關鍵字(英) |
Step stress accelerated destructive degradation test Cumulative exposure model Optimal test plan |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
在可靠度領域中,當在測試樣品與設備不多時,為了探討高可靠度產品壽命資訊,逐步應力加速試驗是最常使用的方法。本文首先以聚合物資料為動機例子,使用累積曝曬模型 (cumulative exposure model) 的概念,建構出逐步應力加速破壞衰變模型,以推估產品在正常應力下的壽命,與其近似變異數。接著執行此試驗的最佳化設計,找出逐步應力最佳改變時間點,以精確推估高可靠度產品的壽命。最後本文進行模擬分析,探討最大概似估計量的大樣本特性,從模擬結果可知,當樣本數越大時,模擬結果會接近最大概似估計量的漸近結果。 |
英文摘要 |
In the field of reliability, step stress accelerated testing is the most commonly used method for assessing the lifetime of highly reliable products when the available test sample and equipment are very few. Motivated by a polymer data, the article used the concept of cumulative exposure model to construct the step stress accelerated destructive degradation test model. Then, the products’ lifetime and the corresponding variance at normal environment can be obtained by extrapolation. And, the optimal change point time for stresses can be acquired precisely by minimizing the approximate variance of the estimated products’ lifetime. Finally, the simulation study was conducted to discuss the large sample property of the maximum likelihood estimator. The simulation result showed that the simulated values are quite close to the asymptotic values when sample sizes are large enough. |
第三語言摘要 | |
論文目次 |
目錄 一、 緒論 1 1.1 前言 1 1.2 文獻探討 4 1.2.1 逐步應力加速試驗 4 1.2.2 加速衰變試驗 6 1.2.3 累積曝曬模型 8 1.3 研究動機與目的 9 1.4 研究架構 12 二、 逐步應力加速破壞衰變模型 13 三、 資料分析 20 3.1 動機例子回顧 20 3.2 模擬分析 24 四、 結論與未來發展 27 附錄一 28 附錄二 29 參考文獻 32 |
參考文獻 |
1.Alhadeed, A. A, and Yang, S. S. (2005). “Optimal simple step stress plan for cumulative exposure model using log-normal distribution,” IEEE Transactions on Reliability, 54, 64-68. 2.Amini, M., Shemehsavar, S., and Pan, Z. (2016). “Optimal design for step stress accelerated test with random discrete stress elevating times based on gamma degradation process,” Quality and Reliability Engineering International, 32, 2391-2402. 3.Byrd, R. H., Gilbert, J. C., and Nocedal, J. (2000). “A trust region method based on interior point techniques for nonlinear programming,” Mathematical Programming, 89, 49-185. 4.Haghighi, F., and Bae, S. J. (2015). “Reliability estimation from linear degradation and failure time data with competing risks under a step stress accelerated degradation test,” IEEE Transactions on Reliability, 64, 960-971. 5.Hakamipour, N. (2017). “Optimal plan for step stress accelerated life test with two stress variables for lognormal data,” Iranian Journal of Science and Technology. Transaction A, Science, 42, 2259-2271. 6.Hakamipour, N. (2021). “Approximated optimal design for a bivariate step stress accelerated life test with generalized exponential distribution under type-I progressive censoring,” The International Journal of Quality & Reliability Management, 38, 1090-1115. 7.Han, D., and Ng, H. K. T. (2013). “Comparison between constant-stress and step stress accelerated life tests under time constraint,” Naval Research Logistics, 60, 541-556. 8.Han, D. (2019). “Optimal design of a simple step‐stress accelerated life test under progressive type-I censoring with nonuniform durations for exponential lifetimes,” Quality and Reliability Engineering International, 35, 1297-1312. 9.Hirose, H., and Sakumura, T. (2012). “The extended cumulative exposure model (ECEM) and its application to oil insulation tests,” IEEE Transactions on Reliability, 61, 625-633. 10.Martinussen, T., Vansteelandt, S., Tchetgen, T., Eric, J., and Zucker, D. M. (2017). “Instrumental variables estimation of exposure effects on a time‐to‐event endpoint using structural cumulative survival models,” Biometrics, 73, 1140-1149. 11.Nelson, W. (1990). “Analysis of performance degradation data from accelerated test,” IEEE Transactions on Reliability, 30, 149-155. 12.Peng, C. Y., and Tseng, S. T. (2010). “Progressive-stress accelerated degradation test for highly-reliable products,” IEEE Transactions on Reliability, 59, 30-37. 13.Qiu, W., and Meeker, W. Q. (2008). “Optimum step stress accelerated life test plans for log-location-scale distributions,” Naval Research Logistics, 55, 551-562. 14.Qiu, W., and Rosner, B. (2009). “Measurement error correction for the cumulative average model in the survival analysis of nutritional data: application to nurses,” Lifetime Data Analysis, 16, 136-153. 15.Shen, K. F., Shen, Y. J., and Leu, L. Y. (2010). “Design of optimal step stress accelerated life tests under progressive type-I censoring with random removals,” Quality & Quantity, 45, 587-597. 16.Sun, T., and Shi, Y. (2016). “Estimation for Birnbaum-Saunders distribution in simple step stress accelerated life test with type-II censoring,” Communications in Statistics. Simulation and Computation, 45, 880-901. 17.Teng, S. L., and Yeo, K. P. (2002). “A least-squares approach to analyzing life-stress relationship in step stress accelerated life tests,” IEEE Transactions on Reliability, 51, 177-182. 18.Tsai, C. C., Tseng, S. T., Balakrishnan, N., and Lin, C. T. (2013). “Optimal design for accelerated destructive degradation test,” Quality Technology and Quantitative Management, 10, 263-276. 19.Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D. (2006). “An interior algorithm for nonlinear optimization that combines line search and trust region steps,” Mathematical Programming, 107, 391-408. 20.Xie, Y., King, C. B., Hong, Y., and Yang, Q. (2018). “Semiparametric models for accelerated destructive degradation test data analysis,” Technometrics, 60, 222-234. 21.Yang, G. (2007). Life Cycle Reliability Engineering. Hoboken, New Jersey: John Wiley & Sons. 22.Yang, H. E., Wang, R., and Xiaoling, X. U. (2018). “The failure mode of cyclic progressive stress accelerated life testing for Lomax distribution based on cumulative exposure model,” Journal of Shanghai Normal University (Natural Sciences), 47, 513-518. 23.林姿吟 (2013). “偏常態量測誤差模型下之加速破壞衰變試驗”, 淡江大學數學學系碩士論文。 24.林琮庭 (2013). “加速應力允收試驗之最佳化設計”, 淡江大學數學學系碩士論文。 25.古橋田皓程 (2020). “學生t分配模型下之加速破壞衰變試驗”, 淡江大學數學學系碩士論文。 |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信