| 系統識別號 | U0002-1806202517263300 |
|---|---|
| DOI | 10.6846/tku202500281 |
| 論文名稱(中文) | 道德考量對大學生使用 ChatGPT 在學習應用中的接受度之探討 |
| 論文名稱(英文) | Examining the Impact of Ethical Considerations on University Students' Acceptance of ChatGPT in Learning Applications |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 教育科技學系碩士班 |
| 系所名稱(英文) | Department of Educational Technology |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 范茗茗 |
| 研究生(英文) | Ming-Ming Fan |
| 學號 | 613730067 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-05-28 |
| 論文頁數 | 78頁 |
| 口試委員 |
指導教授
-
鍾志鴻(150014@o365.tku.edu.tw)
口試委員 - 卓美秀 口試委員 - 林逸農 |
| 關鍵字(中) |
ChatGPT 道德考量 MFQ-2 UTAUT 科技接受 |
| 關鍵字(英) |
ChatGPT ethical considerations MFQ-2 UTAUT technology acceptance |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
研究探討德考量對大學生接受ChatGPT作為學習工具的影響。研究採用道德基礎問卷新版(MFQ-2)整合科技接受理論(UTAUT)為基礎,通過問卷調查收集數據,運用PLS-SEM進行分析。結果顯示,道德傾向顯著影響付出績效、預期績效與促成條件三項科技接受前因變數,其中促成條件與付出績效則對使用意圖具有顯著正向影響。社群影響與預期績效對使用意圖則未達顯著,顯示學生更重視實際操作與技術支援。研究結果支持將道德考量納入科技接受模型,並對教育現場在推動生成式 AI 應用時提供實務與理論參考。 |
| 英文摘要 |
This study investigates the impact of moral considerations on university students’ acceptance of ChatGPT as a learning tool. Drawing on the revised Moral Foundations Questionnaire (MFQ-2) and integrating the Unified Theory of Acceptance and Use of Technology (UTAUT), data were collected through a survey and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results indicate that moral considerations significantly influence three key antecedents of technology acceptance: effort expectancy, performance expectancy, and facilitating conditions. Among these, facilitating conditions and effort expectancy have a significant positive effect on behavioral intention to use ChatGPT, while performance expectancy and social influence do not show significant effects. This suggests that students place greater importance on hands-on experience and technical support than on perceived performance or peer opinions. The findings support the integration of ethical considerations into technology acceptance models and offer both theoretical and practical implications for promoting generative AI in educational settings. |
| 第三語言摘要 | |
| 論文目次 |
目錄 謝誌 i 中文摘要 ii 英文摘要 iii 目錄 iv 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究問題 5 第四節 研究範圍與限制 6 第五節 名詞解釋 8 第二章 文獻探討 13 第一節 CHATGPT在學習上的應用 14 第二節 AI幻覺 16 第三節 資訊倫理 18 第四節 道德考量 22 第五節 新版道德基礎問卷(MFQ-2) 24 第六節 整合科技接受理論(UTAUT) 26 第三章 研究方法 33 第一節 研究架構 33 第二節 資料處理與分析 37 第三節 研究流程 39 第四節 研究對象與抽樣工具 44 第五節 研究工具 45 第四章 研究結果 47 第一節 量測模型檢驗結果 47 第二節 PLS - SEM分析結果 52 第五章 結論與討論 61 第一節 研究結論 61 第二節 研究討論 66 第三節 研究建議 67 參考文獻 69 附錄 75 表次 表2-4-1資訊倫理研究初探……………………………………………………….19 表2-6-1 整合科技接受理論要素發展表…………………………………………27 表3-1-1 研究假設路徑對應表……………………………………………………36 表4-1-1 信度和區聚效度的檢驗結果……………………………………………49 表4-1-2 區辨效度的檢驗結果…………………………………………………….51 表4-2-1 主要假設的路徑係數(β)、T值及P值 …………………….………….55 表4-2-2 模型對內生變數的解釋力檢驗結果…………………………….……...58 圖片目錄 圖2-6-1 UTAUT理論架構圖 …………………………………………………….31 圖3-1-1 研究架構圖……..……………………………………………………...….35 圖3-3-1 研究流程圖……..…………………………………...…………………….40 圖4-2-1 本研究的全部樣本結構模型研究架構圖……..………………...……….54 |
| 參考文獻 |
中文文獻 朱家榮. (2010). 資訊倫理研究初探. 臺灣圖書館管理季刊, 6(1), 1-15. https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A10002010 杜承潔. (2015). 探討使用者對行動通訊軟體之分享行為—以LINE為例 (碩士論文, 國立屏東大學). 國家圖書館臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/7tks3p 孫淑真. (2017). 影響中高齡者使用醫院網路掛號系統意向之研究 (碩士論文, 南華大學). 國家圖書館臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/phju64 施懿珊. (2007). 國小高年級學生資訊倫理數位教材之設計與發展(碩士論文, 淡江大學). 國家圖書館臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/hjc2e9 莊道明. (1997). 建構資訊社會的新秩序—資訊倫理. 國家政策(動態分析)雙週刊, 175, 11-12. 董正隆. (2024). AI 幻覺是什麼? iSuperman. 取自 https://www.isuperman.tw/ai%E5%B9%BB%E8%A6%BA%E6%98%AF%E4%BB%80%E9%BA%BC%EF%BC%9F/ 劉世南(2025)。後抄襲時代:人工智慧與神經技術時代的跨學科倫理與誠信。中華文化總會觀點。 https://opinion.cw.com.tw/blog/profile/575/article/16846 英文文獻 Alharbi, S., & Alyahya, S. (2020). Factors affecting the acceptance of integrated electronic personal health records in Saudi Arabia: The impact of e-health literacy. Journal of Infection and Public Health, 13(12), 2047-2054. https://pubmed.ncbi.nlm.nih.gov/33249857 Borji, A. (2023). A Categorical Archive of ChatGPT Failures (arXiv:2302.03494). arXiv. https://doi.org/10.48550/arXiv.2302.03494 Bowman, E. (2022, December 19). A new AI chatbot might do your homework for you. But it's still not an A+ student. NPR. https://www.npr.org/2022/12/19/1143912956/chatgpt-ai-chatbot-homework-academia Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International. https://doi.org/10.1080/14703297.2023.2190148 Dogruyol, B., Velioglu, İ., Bayrak, F. et al. (2024) Validation of the moral foundations questionnaire-2 in the Turkish context: exploring its relationship with moral behavior. Curr Psychol 43, 24438–24452. https://doi.org/10.1007/s12144-024-06097-z Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). SAGE Publications. https://eli.johogo.com/Class/CCU/SEM/_A%20Primer%20on%20Partial%20Least%20Squares%20Structural%20Equation%20Modeling_Hair.pdf Hatherley, R., & Hatherley, J. (2019). The promise and perils of AI in medicine. International Journal of Chinese & Comparative Philosophy of Medicine, 17(2), 79-109. https://doi.org/10.24112/ijccpm.171678 Graham, J., Nosek, B. A., Haidt, J., Iyer, R., Koleva, S., & Ditto, P. H. (2011). Mapping the moral domain. Journal of Personality and Social Psychology, 101(2), 366–385. https://doi.org/10.1037/a0021847 Kasneci, E., Sessler, K., Betschart, S., Widenka, T., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 Krontiris, I., et al. (2020). Autonomous Vehicles: Data Protection and Ethical Considerations. CSCS '20, December 2, 2020, Feldkirchen, Germany. https://doi.org/10.1145/3385958.3430481 Kossen, J., Farquhar, S., Kuhn, L., & Gal, Y. (2024). Detecting hallucinations in large language models using semantic entropy. Nature, 630(8017), 625-630. https://doi.org/10.1038/s41586-024-07421-0 Li, H. (2022). The acceptance of artificial intelligence in healthcare: The roles of expected utility and usability. BMC Medical Informatics and Decision Making, 22(1). https://doi.org/10.3389/fmed.2022.990604 Luan, H., Tsai, Y. S., & Chai, C. S. (2023). AI literacy in education: A systematic review of empirical research from 2011 to 2022. Computers & Education: Artificial Intelligence, 4, 100136. https://doi.org/10.1016/j.caeai.2023.100136 Lund, B. D., & Wang, T. (2023). Chatting about ChatGPT: How may AI and GPT impact academia and libraries? The Journal of Academic Librarianship, 49(1), 102-120. http://dx.doi.org/10.2139/ssrn.4333415 Meindl, P., Iyer, R., & Graham, J. (2019). Distributive justice beliefs are guided by whether people think the ultimate goal of society is well-being or power. Basic and Applied Social Psychology, 41(6), 359–385. https://doi.org/10.1080/01973533.2019.1663524 Nguyen, Q. A., & Tran, B. X. (2021). Does knowledge matter? The role of m-Health literacy to the acceptance of m-Health applications. Journal of Science & Technology, University of Danang, 20(1), 52-57. https://doi.org/10.31130/jst-ud2021-444 Oluwajana, D., & Adebayo, A. (2021). Does the student's perspective on multimodal literacy influence their behavioural intention to use collaborative computer-based learning? Education and Information Technologies, 26(5), 5473-5490. https://www.proquest.com/docview/2565287344?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals Perkins, M. (2023). Academic integrity considerations of AI large language models in the post-pandemic era: ChatGPT and beyond. Journal of University Teaching & Learning Practice, 20(2), Article 07. https://ro.uow.edu.au/jutlp/vol20/iss2/07 Sparrow, R., & Hatherley, J. (2019). The Promise and Perils of AI in Medicine, 17(2), 79-109. https://doi.org/10.24112/ijccpm.171678 Tang, X., Hanif, M. S., Haider, N., Rizwan, A., & Khurshid, A. (2024). From Friends to Feedback: Effect of Social Influence on Mobile Shopping in the Post-COVID Era. Sustainability, 16(12), 5134. https://doi.org/10.3390/su16125134. Vărzaru, A. A., Bocean, C. G., & Mangra, M. G. (2022). Assessing Users’ Behavior on the Adoption of Digital Technologies in Management and Accounting Information Systems. Electronics, 11(21), 3613. https://doi.org/10.3390/electronics11213613 Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540 Wang, Y., Huang, Y., & Chen, H. (2022). The impact of expected utility and usability on the acceptance of hybrid teaching systems. Postdigital Science and Education. https://rdcu.be/dXawb Winkelkotte, F., Fobi, D., Möhring, M., & Wild, S. (2025). Testing psychometrics of the moral foundations questionnaire-2 (mfq-2) among pre-service teachers in ghana. Current Psychology: A Journal for Diverse Perspectives on Diverse Psychological Issues. Advance online publication. https://doi.org/10.1007/s12144-025-07630-4 Yılmaz, R. (2023). The effect of digital literacy on technology acceptance: An evaluation on administrative staff in higher education. Journal of Librarianship and Information Science. https://doi.org/10.1177/01655515231160028 Zhao, A. (2024). Embracing ChatGPT for Medical Education: Exploring Its Impact on Doctors and Medical Students. JMIR Medical Education, 10, e52483. https://doi.org/10.2196/52483 |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信