§ 瀏覽學位論文書目資料
系統識別號 U0002-1806202413241700
DOI 10.6846/tku202400248
論文名稱(中文) 創新屬性下智慧零售的接受意願-以隱私與信任為調節變數
論文名稱(英文) Acceptance of Smart Retail under Innovation Attributes : Privacy and Trust as Moderators
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 企業管理學系碩士班
系所名稱(英文) Department of Business Administration
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 112
學期 2
出版年 113
研究生(中文) 湯毅昌
研究生(英文) I-Chang Tang
學號 611610162
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2024-05-30
論文頁數 85頁
口試委員 指導教授 - 張雍昇 (ebawu@yahoo.com.tw)
共同指導教授 - 李雅婷(yaya@mail.tku.edu.tw)
口試委員 - 陳意文
口試委員 - 趙慕芬
口試委員 - 張雍昇
關鍵字(中) 智慧零售
創新擴散
隱私
信任
科技接受模式
關鍵字(英) Smart Retail
Diffusion of Innovation
Privacy
Trust
Technology Acceptance Model
第三語言關鍵字
學科別分類
中文摘要
隨著科技日新月異的崛起,零售業也有今非昔比的變化,零售商正透過多通路整合同時運營,推出各種創新的服務體驗,進而產生智慧零售的出現,並廣受學術界及企業界關注。過往研究認為創新擴散常被使用於新技術發展的研究,以闡述理解消費者為什麼採用創新技術。在智慧零售與顧客之間又有許多變項會有所影響,其中隱私為個人能去控制分享個資的權利,以及信任為個人期望並具有意願依賴另一方。因此,零售商若能擬定好完善的隱私政策,以及建立好良善的信任關係,並且讓顧客理解到創新科技服務應用是簡易及有用的,將有助於提升顧客其接受意願。 
本研究試圖探討,智慧零售在創新擴散的創新屬性中,是否會使顧客對智慧零售新科技的接受意願有所影響,以及隱私與信任所扮演之調節角色。本研究以台灣使用過相關智慧零售經驗之一般民眾為調查對象,以網路問卷之形式,共回收325份有效問卷。研究結果顯示,創新屬性下智慧零售對接受意願具有正向影響,且零售商的隱私政策能正向調節創新屬性下智慧零售與接受意願之關係。另外,信任雖在創新屬性下智慧零售與接受意願中有顯著效果,卻是負向關係。本研究除了驗證過去有關創新屬性下智慧零售、隱私與接受意願之研究結果外,亦針對信任提出不同觀點解釋假說不成立可能之原因。最後則提供管理意涵、研究限制與未來建議,作為管理者及後續研究者參考。
英文摘要
With the rise of rapidly evolving technology, the retail industry has undergone
significant changes. Retailers are integrating multiple channels and launching innovative service experiences, giving rise to the emergence of smart retail, which received widespread attention from academia and companies. Previous studies emphasized that the Diffusion of Innovation in the context of new technological developments to understand why consumers adopt innovative technologies. There are many variables that can affect the relationship between smart retail and customers., including privacy, which concerns an individual's ability to control the sharing of personal information. Trust, which involves an individual's expectation and willingness to rely on another party. Therefore, if retailers can establish comprehensive privacy policies, build up perfect trust relationship with customers, and help customers understand that the application of innovative technology services is easy and useful, it will enhance customers' willingness to accept them. 
This study mainly explores whether the innovation attributes of smart retail affect customers' willingness to accept new smart retail technologies and the moderating roles of privacy and trust. The study surveyed the general public in Taiwan who had experience with relevant smart retail technologies, collecting 325 valid responses through online questionnaires. The results indicate that under the innovation attributes, smart retail has a positive impact on acceptance willingness, and retailers' privacy policies positively moderate the relationship between innovation attributes of smart retail and acceptance willingness. Additionally, while trust has a significant effect on acceptance willingness under the innovation attributes, it exhibits a negative relationship. This study not only confirms previous research findings regarding the relationship between innovation attributes of smart retail, privacy, and acceptance willingness but also offers alternative explanations for why hypotheses regarding trust may not support. Finally, management implications, research limitations, and the suggestions of future research are proposed for managers and subsequent researchers.
第三語言摘要
論文目次
目錄
目錄	I
表目錄	III
圖目錄	IV
第一章	緒論	1
第一節	研究背景與動機	1
第二節	研究目的	4
第三節	研究流程	5
第二章	文獻回顧與探討	7
第一節	創新屬性下智慧零售	7
第二節	隱私	15
第三節	信任	18
第四節	接受意願	21
第五節	研究假說	27
第三章	研究方法	30
第一節	研究架構	30
第二節	研究假說	31
第三節	變數定義與問卷設計	32
第四節	研究對象	34
第五節	統計方法分析	35
第四章	資料分析	38
第一節	敘述性統計分析	38
第二節	測量題項與信效度檢定	41
第三節	研究結果	46
第四節	獨立樣本T檢定與變異數分析	49
第五章	結論與意涵	61
第一節	研究結果	61
第二節	理論意涵	62
第三節	管理意涵	65
第四節	研究限制與未來研究建議	67
參考文獻	69
中文文獻	69
英文文獻	72
附錄:問卷	80

表目錄
表2-1智慧零售相關研究	11
表2-2創新擴散在智慧零售應用之研究	14
表2-3隱私相關研究	17
表2-4信任相關研究	20
表2-5接受意願相關研究	25
表3-1研究假說	31
表3-2各構面之問卷題項表	32
表4-1樣本基本資料分析	39
表4-2創新屬性下智慧零售之因素分析表	42
表4-3隱私之因素分析表	43
表4-4信任之因素分析表	44
表4-5接受意願之因素分析表	44
表4-6驗證性因素分析之模型適配度	45
表4-7相關係數與AVE值平方根	45
表4-8創新屬性下智慧零售、隱私與信任對接受意願之階層迴歸結果	48
表4-9性別對於個研究變項之T檢定表	50
表4-10教育程度對於各研究變項之變異數分析表	51
表4-11年齡對於各研究變項之變異數分析表	52
表4-12職業別對於各研究變項之變異數分析表	54
表4-13平均月薪資所得對於各研究變項之變異數分析表	56
表4-14平均月使用於智慧零售次數對於各研究變項之變異數分析表	57
表4-15 平均月使用於智慧零售金額對於各研究變項之變異數分析表	58
表5-1研究假說之結果	61

圖目錄
圖1-1 研究流程圖	6
圖2-1 理性行為理論架構圖	23
圖2-2 科技接受模式架構圖	25
圖3-1 研究架構圖	30
參考文獻
中文文獻
Linli (2018)。沃爾瑪測試超市機器人,可自動處理網路訂單。科技新報,尖端,科技類,機器人類,電子商務類。
亢樱青(2017)。后互聯網時代:國美如何定義新零售?。中國知網空間,1期。
方世彤(2019)。沃爾瑪機器人門衛會拖地、掃描貨架、分類物品等等。每日頭條,科技類。
毛驤文、劉名寰(2022)。新興科技在智慧零售的應用與趨勢-以台北市為例。臺灣經濟研究月刊,45(11),59-66。
吳昌蓉、陳彥蓉、陳律翰、丁川偉(2019)。智慧零售之有效數據分析與商品推薦。電腦與通訊,178,18-21。
李坤謀(2021) 什麼是零售業 - 新零售產業觀點三部曲。零售的科學。取自:https://reurl.cc/6Q8e0k。
林錦郎、卓麗香、張松山(2018)。社群網站使用顧慮、隱私政策與行為意圖關聯性之研究。全球商業經營管理學報,10,23-36。
柯志賢(2018)。勤業眾信零售力量與趨勢展望。取自:https://reurl.cc/QR7xgZ。
胡曉鷺(2022)。新零售服務創新性感知對顧客價值共創意願的影響研究 ——基於DOI和TTF視角。華中農業大學,1期。
孫憶明(2018)。智慧零售?實體零售店面將會變成什麼樣子?。天下雜誌。
高敬原(2017)。允許陌生人送貨到家裡,亞馬遜推「智慧門鎖」堪稱信任大考驗。數位時代Business next,品牌經營類。
商業與地產(2016)。阿里為何不再做「電商」?馬雲演講全文。每日頭條,科技類。
張智奇、連瑋鑫(2021)。人機協作對於人力需求及技能發展的影響及挑戰。臺灣勞工季刊,65期,24-33。
張筱祺(2019)。智慧零售趨勢前瞻。證券服務,672期,86-88。
張睿恩(2018)。消費者智慧零售技術使用意圖之研究。國立屏東大學商業自動化與管理學系碩士論文。
莊哲仁、徐修順、廖俊強、鄭瑜文(2022)。以創新擴散模式探討新型態多層次傳銷電商消費者購買意願之研究。休閒事業研究,20(1),21-32。
郭仁宗(2020)。屏東大學學報,管理類,第3期,1-26。
郭明煌、廖鴻圖、蕭麗齡、王亭雅(2014)。資訊隱私顧慮對社群網站使用者使用意圖影響之研究─以 Facebook為例。中華民國資訊管理學報,21(4),341-364。
陳冠文(2020)。智慧零售AI應用技術趨勢分析。電腦與通訊,182,35-37。  
陳羿緻(2018)。無人店、科技概念店問世-台灣超商新科技時代來臨!禪天下,163期,52-56。
陳琬婷(2018)。影響消費者雲支付使用意願之研究。淡江大學管理科學學系碩士論文。
黃仁志、林欣蓉(2023)。多感官沉浸式科技的趨勢及未來。經濟前瞻,210期,99-105。
黃洪琳、陳悅慈、陳沛羽(2023)。以科技接受模型探討線上藝文活動POAP之接受度。圖文傳播藝術學報,96-107。
楊禮謙、洪筠緯、李旺蒼、蕭衛鴻、常棕盛(2017)。創新智慧零售之全通路應用-以良興3C零售業為例。臺灣網際網路研討會,570-574。
葉席吟、葉芳瑜、林海珍(2018)。人機協作之生活服務科技創新系統研析。財團法人國家實驗研究院科技政策研究與資訊中心。取自https://pse.is/3kme79。
廖則竣、陶蓓麗、劉玉萍、蕭銘偉、黃姮儀(2012)。網路隱私顧慮及網站信任對使用意向之影響─ 比較初始顧客及重複顧客之觀點。中華民國資訊管理學報,19(4),509-531。
廖偲妤、廖國鋒(2023)。中高齡消費者對遠距照護智慧衣的使用意願研究。紡織綜合研究期刊,33卷,4期,41-58。
劉季清(2020)。《科技》AI+新零售 蝦皮強攻雙11 整合虛實客層。工商時報。
劉怡君、施學琦(2010)。以計劃行為理論為基礎探討線上合購意圖與行為。電子化企業經營管理理論暨實務研討會,429-436。
樊晉源、張瑞芬、簡均樺、蘇怡安、巫胤璇、李旺蒼(2023)。探索智慧商業數位轉型之現況與趨勢-以智慧零售為例。管理與系統,30(2),197-227。
蔡易書(2009)。網路信任對消費者網路購買意願影響之研究。中國文化大學資訊管理研究所碩士論文。
衛生福利部疾病管制署(2022)。COVID-19 公費疫苗預約平台系統操作問答集。取自https://reurl.cc/ez9Anb。
鄭宗宜(2017)。消費者人格特質、知覺有用性與知覺易用性對金融科技服務使用意圖影響之研究。國立台北大學企業管理學系碩士論文。
鄭敏芝、蔡合和、洪秀婉、王文生、呂英傑、林哲如(2015)。使用用途與隱私政策對社群網站持續參與意圖影響之探討:以臉書(Facebook)為例。企業管理學報,106 期,59-79。
蘇靖翔(2021)。探討消費者人格特質對於智慧零售使用意圖之關聯影響。長庚大學商管專業學院碩士論文。

英文文獻
Agarwal, R. & Prasad, J. (1998). A Conceptual and Operational Definition of Personal  Innovativeness in the Domain of Information Technology. Information Systems Research, 9, 204-215. 
Aggelidis, V. P. & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115- 126. 
Aiken, L. S. & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage Publications.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. 
Alzaidi, M.S. & Agag, G. (2022). The role of trust and privacy concerns in using social media for e-retail services: The moderating role of COVID-19. Journal of Retailing and Consumer Services, 68, 103042. 
Bagozzi, R. P. & Yi, Y. (1998). On the Evaluation of Structure Equation Models. Journal of the Academy of Marketing Science, 16, 76-94.
Bahri, R.S., Susan, M., & Gunawan, T. (2023). Exploring the influence of omnichannel experience on trust and repurchase intention in retail companies: evidence from indonesia. International Journal of Professional Business Review, Business. 11(2), e631.
Bates (2011). Retail industry is ripe for mobile. Retrieved from https://pse.is/3p248e.
Bollen, K.A. (1989) Structural Equations with Latent Variables. John Wiley and Sons, Inc., New York. Retrieved from https://reurl.cc/3XNW9X.
Bourlakis, M., Papagiannidis, S., & Li F. (2009). Retail spatial evolution: paving the way from traditional to metaverse retailing. Electron Commerce Research, 9, 135-148. 
Castaldo, S., Ciacci, A., Penco. L., & Profumo, G. (2024). Which trust layer better counterbalances the risk impact on travel intentions in a crisis scenario? Journal of Retailing and Consumer Service, 79, 103883.
Chaudhuri, A. & Holbrook, M.B. (2001). The chain of effects from brand trust and brand affect to brand performance: the role of brand loyalty. Journal of Marketing, 65 (2), 81–93. 
Chen, L.D., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & Management, 39(8), 705-719. 
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8).  
Deloitte. (2020). Global Power of Retaiking 2020. Retrieved from https://reurl.cc/Zyk3WM.
Dev, J. (2023). “How Can I Help You?”: User Perceptions of Privacy in Retail Chat Agents. Computer Science, 158, 1-6.
Disney (1999). Customer satisfaction and loyalty: The critical elements of service quality. Total Quality Management, 10, 491-497.
Esch, P.V., Arli, D., Gheshlaghi, M.H., Andonopoulos, V., Heidt, T.V.D., & Northey, G (2019). Anthropomorphism and augmented reality in the retail environment. Journal of Retailing and Consumer Services, 49, 35-42.
Everett M. Rogers (1983). DIFFUSION OF INNOVATIONS Third Edition. Retrieved from https://pse.is/5dwnyz.
Federal Trade Commission, FTC (1973). Retrieved from https://reurl.cc/WvnpxO.
Fishbein, M. & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introdluction to Theory and Research. Addison-Wesley, Reading. 
Flores, A. & Dorneles L. (2023). Data Privacy in Retail: A Bibliometric Analysis. Revista Interdisciplinar de Marketing, 13(2), 154-172. 
Fornell, C. & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18, 382-388.
Fournier, S., Dobscha, S., & Mick, D.G. (1998). Preventing the Premature Death of Relationship Marketing. Harvard Business Review, 76(1), 42-51. 
Fred Davis (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-339. 
Garbarino, E. & Johnson, M. (1999). The different roles of satisfaction, trust, and c ommitment in customer relationships. Journal of Marketing, 63(2), 70-87. 
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, Vol.27(1), 51-90. 
Ghemawat, P. & Costa, J.E. (1993). The organizational tension between static and dynamic efficiency. Strategic Management Journal, 14(2), 59-73.
Grewal, D., Roggeveen A.L., & Nordfält, J. (2017). The Future of Retailing. Journal of Retailing, 93(1), 1-6.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1992). Multivariate Analysis of Variance. Multivariate Data Analysis, 7, 326-386.
Hajian, A., Sadeghi, R., Prybutok, V. R., & Koh, C. (2024). Increasing trust and value of mobile advertising in retailing: A survey design, machine learning approach, and blockchain in the trust path. Journal of Retailing and Consumer Services, 79, 103794.
Hoyer, W. D., MacInnis D.J., & Pieters, R. (2012). Comsumer Behavior. Cengage Learning. 
Huang, D., Markovitch, D.G., & Stough, R.A. (2024). Can chatbot customer service match human service agents on customer satisfaction? An investigation in the role of trust. Journal of Retailing and Consumer Services, 76, 103600.
Hussain, I., Abrar M., & Shabbir, R. (2023). Role of Innovation Diffusion Theory to Investigate The Consumers' Usage Intention of Omnichannel Retailing. Pakistan Journal of Multidisciplinary Research, 4(1), 93-115.
Kang, J. M., Mun J., & Johnson K. (2015). In-store mobile usage: Downloading and usage intention toward mobile location-based retail apps. Computers in Human Behavior, 46, 210-217. 
Kervenoael, R.D., Schwob, A., Hasan, R., & Psylla, E. (2024). "SIoT robots and consumer experiences in retail: Unpacking repeat purchase intention drivers leveraging computers are social actors (CASA) paradigm. Journal of Retailing and Consumer Services, 76, 103589.
Kleinbaum, D.G., Kupper, L., Muller, K.E., & Nizam A. (1998). Applied regression analysis and other multivariable methods. Pacific Grove: Duxbury Press.
Kuo, R.Z. & Lee, G. (2011). Knowledge management system adoption: exploring the effects of empowering leadership, task-technology fit and compatibility. Behaviour & Information Technology, 30(1), 113-129. 
Laradi, S., Alrawad, M., Lutfi, A., & Agag, G. (2024). Understanding factors affecting social commerce purchase behavior: A longitudinal perspective. Journal of Retailing and Consumer Services, 78, 103751.
Lee, Matthew, K. O., & Turban, E. (2001). A Trust Model for Consumer Internet Shopping. International Journal of Electronic Commerce, 6(1), 75-91. 
Liu, C., Marchewka, J. T., Lu, J., & Yu, C. S. (2005). Beyond concern - a privacy-trust-behavioral intention model of electronic commerce. Information & Management, 42(2), 289-304. 
Luo, X. (2002). Trust Production and Privacy Concerns on the Internet: A Framework Based on Relationship Marketing and Social Exchange Theory. Industrial Marketing Management, 31, 111-118. 
Malhotra, N. K., Sung, S. K., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): the construct, the scale, and a causal model. Information Systems Research, 15(4), 336- 355. 
Marike, K. S., Laura H., & Brandtner, P. (2022). Digitalization at the Point-of-Sale in Grocery Retail - State of the Art of Smart Shelf Technology and Application Scenarios. Procedia Computer Science, 196, 77-84. 
McAllister, D. J. (1997). The second face of trust: Reflections on the dark side of interpersonal trust in organizations. Research on Negotiation in Organizations, 6, 87-111. 
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: an integrative typology, Information Systems Research, 13(3), 334-359. 
Mdoda, A. S. (2022). Manager’s Adoption of New Smart Retail Technology at Clicks Group. Nelson Mandela University, Faculty of Business and Economic science. Retrieved from https://reurl.cc/2YOLva.
Pantano & Timmermans (2014). What is smart for retailing? Procedia Environmental Sciences, 22, 101-107. 
Park & Yoo (2020). Effects of perceived interactivity of augmented reality on consumer responses: A mental imagery perspective. Journal of Retailing and Consumer Services, 52, 101912.
Parkhe, A. (1999). Building trust in international alliances. Journal of World Business, 33(4), 417-437. 
Perumala, S., Qing Y. R., & Jaganathan, M. (2022). Factors influencing attitudes and intentions towards smart retail technology. International Journal of Data and Network Science, Business, Computer Science.
Pinochet, L., Souza, C., Viana, A., Guillermo, R.A., & Pardim V. I. (2023). Determining the Antecedents of Quality of Life Factors from the Use of Smart Technologies in Supermarket Retail. Procedia Computer Science, 221, 458–465. 
Prakash, A.V., Joshi, A., Nim, S., & Das, S. (2023). Determinants and consequences of trust in AI-based customer service chatbots. The Service Industries Journal, 43, 642-675. 
Priporas C., Stylos N., & Fotiadis A. (2017). Generation Z consumers' expectations of interactions in smart retailing: A future agenda. Computers in Human Behavior, 77, 374-381. 
Remark Holdings, Inc. (2018). Remark Holdings and CP ALL Deploying KanKan AI Technologies at 7-Eleven Stores in Thailand. Remark Holdings news. Retrieved from https://reurl.cc/2EnmQE.
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all: a cross-discipline view of trust. Academy of Management Review, 23(3), 393-404. 
Sabah, N. M. (2016). Exploring students' awareness and perceptions: Influencing factors and individual differences driving m-learning adoption. Computers in Human Behavior, 65, 522-533. 
Sebastian Molinillo, Rocío Aguilar-Illescas, Rafael Anaya-Sanchez, & Elena Carvajal-Trujillo (2022). The customer retail app experience: Implications for customer loyalty. Journal of Retailing and Consumer Services, 65, 102842. 
Sharma,N. & Fatima,J.K. (2024). Influence of perceived value on omnichannel usage: Mediating and moderating roles of the omnichannel shopping habit. Journal of Retailing and Consumer Services, 77, 103627.
Sirdeshmukh, D., Singh, J., & Sabol B. (2002). Consumer Trust, Value, and Loyalty in Relational Exchanges. Journal of Marketing, 66 (1), 15-37. 
Siyal, A.W., Chen, H. Shah, S.J., Shahzad, F., & Bano, S. (2024). Customization at a glance: Investigating consumer experiences in mobile commerce applications. Journal of Retailing and Consumer Services, 76, 103602.
Sohn, S. (2024). Consumer perceived risk of using autonomous retail technology. Journal of Business Research, 171, 114389.
ViewSonic (2019). Smart Retail & Industry 4.0 – Pushing Sales into the Future. Retrieved from https://psee.io/5edf4d.
Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information & Management, 41(6), 747-762. 
Warren, S. D. & Brandeis, L. D. (1890). The right to privacy. Harvard Law Review, 4(5), 193-220. 
Westin, A.F. (1967). Privacy and freedom., New York: Athenaeum. Retrieved from https://reurl.cc/5Ome57.
論文全文使用權限
國家圖書館
不同意無償授權國家圖書館
校內
校內紙本論文立即公開
電子論文全文不同意授權
校內書目立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信