系統識別號 | U0002-1801201601574400 |
---|---|
DOI | 10.6846/TKU.2016.00459 |
論文名稱(中文) | 穿戴式入睡品質監測系統之研發 |
論文名稱(英文) | Development of A Wearable System That Indicates Sleep Induction |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 電機工程學系博士班 |
系所名稱(英文) | Department of Electrical and Computer Engineering |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 104 |
學期 | 1 |
出版年 | 105 |
研究生(中文) | 李永文 |
研究生(英文) | Yung-Wen Lee |
學號 | 897440094 |
學位類別 | 博士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2015-12-31 |
論文頁數 | 56頁 |
口試委員 |
指導教授
-
李揚漢(yhlee@ee.tku.edu.tw)
委員 - 郭博昭 委員 - 許獻聰 委員 - 曾憲威 委員 - 蘇木春 委員 - 翁慶昌 委員 - 曹恆偉 |
關鍵字(中) |
光學式心率 心率變異 加速規 睡眠品質 睡眠多項生理檢查 LFP |
關鍵字(英) |
PRV HRV Accelerometer Sleep Quality Polysmnography LFP |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本論文以穿戴裝置 "光學式心率" 及 "心率變異" 並輔以 "加速規 (Accelerometer)" 偵測身體動量,結合腦波信號放大記錄模組分析入睡品質。並提出以 "t(LFPmin) 開始睡眠至心率變異LFP(Low Frequency Power)參數的最低點時間" 做為評估入睡品質之參考。 醫學上以 "睡眠多項生理檢查(Polysomnography / PSG)"為分析睡眠分析的標準。 PSG結合多種檢驗設備,藉由專科醫師的經驗判斷,可分析睡眠狀態及睡眠障礙。但是複雜連接身體的導線與許多測試設備往往影響睡眠品質,且需專科醫師診斷,難以在居家生活中使用。 Accelerometer (三軸G sensor) 手環/手錶偵測睡眠的原理是觀察受測者的手部晃動狀態。然而一般人在沉睡時身體應該是極度放鬆,因此身體不應該有任何移動或變化。而手部為身體的一部分,故以偵測手部動作取代偵測全部身體的晃動。手部長時間未晃動甚至長時間未曾改變姿勢,則代表進入熟睡。但受測者可能手部長時間未晃動,可是腳晃動如此造成以加速規偵測睡眠的方法並不準確。 本論文提出以穿戴裝置 "光學式心率"之心率變異的LFP參數做為評估入睡品質監測之參考。輔以EEG腦波資料與睡眠期間心率變異資料,進而可更準確的判斷睡眠品質,做為改善睡眠品質之依據。 |
英文摘要 |
The Heart Rate Variability (HRV) wearable device and Accelerometer with body activity information using the brainwave recording module can analyze the sleep quality through the parameter, t(LFPmin), defined as the start time for deep sleep. The t(LFPmin) can be obtained from one of the HRV parameters, LFP. Using the information from the HRV wearable device and Accelerometer, we can find the time difference between the LFPmin and the body activity stable signal as t(LFPmin). The body activity stable signal via the acclelerometer bracelet/ watch can represent the status entering the extremely relaxed during sleep. The duration of the body activity stable should not be any physical movement or change. The standard sleep analysis, Polysommnography (PSG) should ultilize a lot of testing equipments to bring sleep disorders via the body’s complex wire connection for a number of test equipments. The PSG analysis is difficult to use in the daily life’s sleep analysis. The LFP(Low Frequency Power) of HRV parameter can be used as a reference to determine the quality of sleep. Using the EEG brainwave data and heart rate variability information during sleep, we can analyze the sleep status for improving the quality of sleep. |
第三語言摘要 | |
論文目次 |
目錄 ACKNOWLEDGEMENTS I 中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 睡眠品質研究與心率變異、PPG 1 技術之簡介 1 1.1 研究動機 1 1.2 入睡品質研究簡介 3 1.2.1 睡眠多項生理檢查 PSG 5 1.2.2 Activity 睡眠週期偵測 6 1.2.3 睡眠腦波簡介 7 1.2.4 論文研究設備簡介 9 1.2.4.1 PPG1717 9 1.2.4.2 DAQ100 11 1.3 HRV與 PRV技術簡介 13 1.3.1 HRV 介紹 13 1.3.2 HRV-ECG介紹 14 1.3.3 PRV-PPG介紹 15 1.3.3.1 PRV時域分析法 18 1.3.3.2 PRV頻域分析法 18 第二章 穿戴裝置與系統之設計 20 2.1 PRV-PPG穿戴裝置與系統之設計 20 2.1.1 PRV-PPG穿戴裝置之設計 22 2.1.2 PRV-PPG穿戴系統之設計 23 2.2 PPG穿戴裝置與系統之實測 24 2.2.1 靜態PPG穿戴裝置與系統之實測驗證 24 2.2.2 動態PPG穿戴裝置與系統之實測驗證 25 第三章 睡眠之PRV-PPG系統實測簡介 29 3.1 睡眠腦波實測方法簡介 29 3.1.1 睡眠腦波實測環境說明 31 3.1.2 實測腦波之結果 33 第四章 入睡品質監測分析 36 4.1 入睡品質監測分析之流程 36 4.2 PRV-PPG與睡眠腦波實測結果分析 39 第五章 總結與貢獻 51 第六章 未來研究 52 參考文獻 53 圖目錄 圖 1 1. 本論文之系統架構 2 圖 1 2. 睡眠階段分類[11] 4 圖 1 3. 睡眠多項生理檢查示意圖[12] 5 圖 1 4. 市場上各種測試活動量的手環產品 6 圖 1 5. 腦波儀設備[16] 7 圖 1 6. EEG量測電極位置圖 8 圖 1 7. 與睡眠週期有關之四個單導層腦波[17] 8 圖 1 8. 心動生技股份有限公司PPG1717模組實體圖 9 圖1 9. 心動生技開發之PPG1717模組系統架構圖 9 圖1 10. PPG1717模組測得之PPG波形 10 圖1 11. PPG1717量測錶正面 10 圖1 12. PPG1717量測錶背面圖 10 圖1 13. DAQ100 產品實體圖 11 圖1 14. DAQ100模組測量單導層腦波波形 11 圖1 15. 使用DAQ100量測腦波之正面示意圖 12 圖1 16. 使用DAQ100量測腦波之側面示意圖 12 圖1 17. 光學式睡眠手環應用於大數據雲端資料分析系統 12 圖1 18. HRV量測波形之RRI參數[22] 13 圖1 19. HRV量測之靜態RR速度圖[2] 14 圖1 20. HRV量測之頻域分析圖[2] 14 圖1 21. 連續時間HRV計算過程[2][18] 14 圖1 22. HRV Flow Chart[2] 15 圖1 23. 連續時間PRV計算過程[2][18] 16 圖1 24. PRV Flow chart [2] 16 圖1 25. ECG與PPG在量測心率變異之結果比較圖[30] 17 圖2 1. 12導層心電圖 [31] 20 圖2 2. 穿透式PPG量測示意圖[35] 21 圖2 3. 反射式PPG量測示意圖[35] 21 圖2 4. PPG訊號量測之Forward Wave與Reflect Wave示意圖[35] 21 圖2 5. 反射式PPG量測在人體皮膚之作用狀況示意圖[35] 21 圖2 6. 穿戴過緊訊號變差 22 圖2 7. 穿戴過鬆訊號ok 22 圖2 8. 穿戴過鬆甩手滑動訊號 22 圖2 9. PPG wrist正確配戴方式 22 圖2 10. 配戴過鬆 22 圖2 11. 配戴鬆緊度適宜 22 圖2 12. PPG1717天線設計配置 23 圖2 13. 具有手腕穿戴的效應 23 圖2 14. 空機測試 23 圖 2 15. 跑步機測試狀況 24 圖2 16. 跑步機測試PPG錶配戴位置 24 圖2 17. 40秒靜態PPG1717與市面販售之心率帶分析比較資料 25 圖2 18. 631秒動態PPG與市面販售之心率帶的比較資料 26 圖2 19. 807秒動態PPG與市面販售之心率帶的比較資料 27 圖2 20. 733秒動態PPG與市面販售之心率帶的比較資料 28 圖3 1. 睡眠腦波量測貼片位置(fpz) 30 圖3 2. 睡眠腦波量測貼片位置(a1) 30 圖3 3. 睡眠腦波量測貼片位置(fp1) 30 圖3 4. 睡眠腦波量測貼片位置(a1) 30 圖3 5. 睡眠腦波實測環境配置圖 31 圖3 6. 睡眠腦波實測環境圖 31 圖3 7. 椅子上戴帽子午睡腦波實測(1) 32 圖3 8. 椅子上戴帽子午睡腦波實測(2) 32 圖3 9. 受測者一之晚間睡眠紀錄時間:5小時31分鐘(19860秒) 33 圖3 10. 受測者一之午休睡眠紀錄時間:21分鐘32秒(1292秒) 34 圖3 11. 受測者二之午休睡眠紀錄時間:23分鐘20秒(1400秒) 35 圖4 1. 靜止檢查與Global_LFPmin流程圖 36 圖4 2. 偵測各個Local_LFPmin 流程圖 38 圖4 3. 受測者一之睡眠記錄波形 39 圖4 4.受測者一之睡眠記錄波形 40 圖4 5. 受測者一之睡眠記錄波形 41 圖 4 6. 受測者一之睡眠記錄波形 42 圖4 7. 受測者一之睡眠記錄波形 43 圖4 8. 受測者一之睡眠記錄波形 44 圖 4 9. 受測者一之睡眠記錄波形 45 圖 4 10. 受測者一之睡眠記錄波形 46 圖 4 11 . 受測者一之睡眠記錄波形 47 圖4 12. 受測者一之睡眠記錄波形 48 圖4 13. Global Minimum = Local Minimum 49 圖4 14. Global Minimum ≠ Local Minimum 50 圖4 15. Global Minimum(K+3th)≠ Local Minimum Kth, K+1th, K+2th 50 表目錄 表1 1. PPG1717模組規格 10 表1 2. DAQ100 模組規格 11 表1 3. HRV量測時域變數表[2] 18 表1 4. HRV量測頻域分析變數表[2] 19 |
參考文獻 |
參考文獻 [1] “睡眠多項生理檢查,” 社團法人台灣睡眠障礙協會, 2016 http://www.sleep.org.tw/ugC_Polysomnography.asp [2] Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology(Membership of the Task Force listed in the Appendix), “[Guidelines] Heart rate variability-Standards of measurement, physiological interpretation, and clinical use,” European Heart Journal, Vol. 17, pp. 354-381, 1996. [3] Peilin Lee, “睡眠生理介紹-睡眠生理與睡眠障礙” 台大醫院睡眠中心衛教專區, Oct. 23 2014. [4] Yang, C. C. H., Lai, C. W., Lai, H. Y., and Kuo, T. B. J., “Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans, ” Neuroscience Letters, Vol. 329, pp. 213-216, 2002. [5] Yang, C. C. H., Shaw, F. Z., Lai, C. J., Lai, C. W., and Kuo, T. B. J., “Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats, ” Neuroscience Letters, Vol. 336, pp.21-24, 2003. [6] Kuo, T. B. J., Lai, C. T., Chen, C. Y., Lee, G. S. and Yang, C. C. H. “Unstable sleep and higher sympathetic activity during late sleep periods of rats: implication for late sleep-related higher cardiovascular events, ” Journal of Sleep Research, Vol. 22 pp. 108-118, 2012. [7] Huang C. C., Kuo, T. B. J. and Yang, C. C. H., “Sleep related heart rate variability change in free moving mice,” The 20th joint Annual Conference of Biomedical Sciences, Taipei, Taiwan, 2005. [8] Kuo, T. B. J., Shaw, F. Z., Lai, C. J., and Yang, C. C. H., “Asymmetry in sympathetic and vagal activities during sleep-wake transitions,” Sleep, Vol. 31, pp.311-320, 2008. [9] Kuo, T. B. J., Lai, C. T., Chen, C. Y., Lee, G. S. and Yang, C. C. H., “Unstable sleep and higher sympathetic activity during late sleep periods of rats: implication for late sleep-related higher cardiovascular events,” Journal of Sleep Research, Vol. 22, pp. 108-118, 2012. [10] 復御企業, “睡眠生理學,” March 11, 2011. http://fuyu.com.tw/ContentList.asp?MainCatNo=112&SubCatNo=11202&SubAdvCatId=1120208&ContentId=721 [11] “Stages of Sleep”, Boundless https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/states-of-consciousness-6/sleep-and-dreaming-42/stages-of-sleep-182-12717/ [12] “Electroencephalograph-recoder”Medicom MTD, http://www.medicom-mtd.com/en/products/eegr-main.html [13] S. Romero, M. A. Mananas, J. L. Lorenzo, S. Clos and M. J. Barganoj, “Analysis of Sleep Spindles In Different NREM-REM Cycles by Means of Bispectra,” Proceedings of the Second Joint EMBS/BMES Conference, pp.171-172, Oct. 23-26, 2002. [14] M. Eka S., M. Fajar, M. Iqbal T., W. Jatmiko, and I Md. Augus, “FNGLVQ FPGA Design for Sleep Stages Classification based on Electrocardiogram Signal, ” 2012 IEEE International Conference on Systems, Man, and Cybermetics, pp. 2711-2716, Oct. 14-17, 2012, Seoul, Korea. [15] Yaw-Chern Lee, Chia-Ching Chou, Wai-Chi Fang and Hsiang-Cheh Huang, “Portable Sleep Monitoring and Awaking System Based on EEG, ECG, Tri-Axis Accelerometers and LED Array Panel,” 2011 IEEE International Conference on Consumer Electronics- Berlin (ICCE-Berlin), pp. 133-136, 2011. [16] “Nuamps 40-channel EEG/ERP Amplifier”COMPUMEDICS NeuroSCan, http://compumedicsneuroscan.com/nuamps-eegerp-amplifier/ [17] “超脑力三大核心技术之《潜意识训练-优势脑波》” 超脑力的《父母学堂》系列 之家长培训课程, http://www.weibo.com/p/1001603765891878761766?from=page_100606_profile&w vr=6&mod=wenzhangmod [18] 李永文, “PPG and HRV 應用,” BeneGear-心動生技股份有限公司, Sept. ,2015. [19] Chen, P. L., Kuo, T. B. J., and Yang, C. C. H., “Parasympathetic activity correlates with early outcome in patients with large artery atherosclerotic stroke, ” Journal of the Neurological Sciences, Vol. 314, pp.57-61, 2012. [20] Wang, T. S., Huang, W. L., Kuo, T. B. J., Lee, G. S. and Yang, C. C. H., “Inattentive and hyperactive preschool-age boys have lower sympathetic and higher parasympathetic activity,” Journal of Physiological Sciences, Vol. 3, pp.87-94, 2012. [21] Li, J. Y., Liu, T. H., Kuo, T. B. J., and Yang, C. C. H., “Exercise training prevents the establishment of hypertension in spontaneously hypertensive rats (SHRs): changes in sympathetic activity and sleep patterns,” Taiwan Society of Sleep Medicine, Taipei, Taiwan, 2013. [22] Rami J. Qweis and Basim O. AI-Tabbaa, “QRS Detection and Heart Rate Variability Analysis: A Survey,” Biomedical Science and Engineering, Vol. 2, No. 1, pp. 13-34, 2014. [23] Arthur J. Lim and Wallace D. Winters, “A Practical Method for Automatic Real-Time EEG Signal Sleep State Analysis,” IEEE Transactions on Biomedical Engineering, Vol. BME-27, No. 4, April 1980. [24] Guohun Zhu, Yan Li and Peng Wen, “Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal,” IEEE Journal of Biomedical and Health Informatics, Vol. 18, No. 6, Nov., 2014. [25] Rajeew Agarwal and Jean Gotman, “Long-Term EEG Compression for Intensive- Caresettings, ” IEEE Engineering in Medicine and Bilogy Magazine, Vol. 20, Issue 5, pp.23-29, Oct. 2001. [26] Jose C. Principe, Jack R. Smith, Shiv K. Balakrishnan and Arnolod Paige, “Microcomputer-Based Digital Filters for EEG Processing, ” IEEE Transctions on Acoustics, Speech, and Signal Processing, Vol. ASSP-27, No. 6, Dec. 1979. [27] Philippe Boudreau, Chris J. Brouse, Guy A. Dumont and Diane B. Boivin, “Sleep- Wake and Circadian-Dependent Variation of Cardiorespiratory Coherence, ” 34th Annual International Conference of the IEEE EMBS, Aug. 28- Sept. 1, 2012, San Diego, USA. [28] D. Meissner, C. Alvarado-Rojas, M. Le Van Quyen and M. A. Valderama, “Slow Wave Comparative Analysisi During non-REM Sleep Stage for normal Subjects and Epileptic Patients, ” 2013 PAN American Health Exchanges (PAHCE), pp. 1,April 29-May 4 ,2013. [29] “Brain Research Methods” ProProfs, http://www.proprofs.com/flashcards/story.php?title=brain-research-methods [30] DONAZIONE – Quarta Caffè tasta il polso, http://www.comunicaffe.it/donazione-quarta-caffe-tasta-il-polso/ [31] 怎樣看心電圖 http://www.wuji8.com/meta/800009482.html [32] Xi Long, Pedro Fonseca, Reinder Haakma, Jerome Foussier and Ronald M. Aarts, “Automatic Detection of Overnight Deep Sleep Based on Heart Rate Variability: A Preliminary Study,” 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC), pp. 50-53, Aug. 26-30, 2014. [33] Edson Estrada and Homer Nazeran, “EEG And HRV Signal Features For Automatic Sleep Staging And APNEA Detection,” 2010 20th International Conference on Electronics, Communications and Computer (CONILECOMP), pp. 142-147, 2010. [34] Malgorzata Szypulska and Zbigniew Piotrowski, “Prediction of Fatigue and Sleep Onset Using HRV Analysis,” 19th International Conference “Mixed Design of Integrated Circuits and Systems”, May 24-26, 2012, Warsaw, Poland. [35] 呂宗憲, 林筱莉, 陳智傑, “ECG與PPG信號之相關性研究,” 逢甲大學自動控制工 程學系大學部畢業專題, Jan. 2006. [36] M. O. Mendez, Matteucci, S. Cerutti, F. Aletti and A.M. Bianchi, “Sleep Staging Classification Based on HRV: Time-Variant Analysis,” 31st Annual International Conference of the IEEE EMBS Minneapolis, Sept. 2-6, 2009, Minnesota, USA. [37] Anna Maria Bianchi, Martin Oswaldo and Sergio Cerutti, “Processing of Signal Recorded Through Smart Devices: Sleep-Quality Assesment,” IEEE Transactions on Information Technology in Biomedicine, Vol. 14, No. 3, May 2010. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信