§ 瀏覽學位論文書目資料
系統識別號 U0002-1708202213361900
DOI 10.6846/TKU.2022.00426
論文名稱(中文) 研製適用於矽晶圓背磨減薄製程之陶瓷結合劑鑽石砂輪
論文名稱(英文) Design and Development of a Vitrified Bond Diamond Grinding Wheel for Back-thinning Process of Silicon Wafer
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 110
學期 2
出版年 111
研究生(中文) 張易
研究生(英文) Yi Chang
學號 609370274
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2022-07-06
論文頁數 78頁
口試委員 指導教授 - 趙崇禮(clchao@mail.tku.edu.tw)
口試委員 - 謝榮哲
口試委員 - 何嘉哲
關鍵字(中) 背磨
矽晶圓
陶瓷結合劑
孔隙率
關鍵字(英) Back Grinding
Silicon Wafer
Vitrified Bond
Porosity
第三語言關鍵字
學科別分類
中文摘要
為因應市場對高積體度晶片之需求,晶圓一般會以背磨(Back Grinding)製程將厚度從七百多微米減薄至75um ~20um;再透過堆疊封裝技術(MCP: Multi-Chip Packaging) 以多層半導體結構提高積體度。而減薄後之厚度愈薄可堆疊之層數愈多亦即積體度愈高,但伴隨而來的是對背磨製程之要求也愈嚴苛;其對表面粗糙度及刮痕的需求隨之提高。針對此一問題,本研究開發一種陶瓷結合劑鑽石砂輪,使用高號數(#30000)鑽石粉末作為砂輪的磨料。然而採用這種超細磨料在輪磨加工時須克服砂輪極易填塞之問題,同時為考量加工成本及效率必須有效減少砂輪修銳次數。本研究通過添加聚甲基丙烯酸甲酯(PMMA)造孔劑,使砂輪具有高孔隙率大孔徑之結構,為加工生的切屑提供更多的空間以解決填塞之問題,並透過光學膨脹分析儀為砂輪制定燒結條件,證實該款砂輪能夠在相對低溫550℃的燒結條件製成。如此可大幅減少生產所需之耗能與時間。本研究加工結果顯示,氣孔型結構砂輪具有良好的自銳性,因此能夠進行連續的精加工輪磨,同時加工阻力小,使用壽命長(Grinding Ratio ≥ 3 - 3.8)。雷射掃描共軛焦顯微鏡(LSCM)分析結果顯示,輪磨後的矽晶圓表面粗糙度Ra可達到4nm,能有效減少後續拋光(CMP)所需之時間。
英文摘要
To meet the market demand for highly integrated chip, backgrinding process is normally performed to thin the silicon wafers from around 720 um to 75 um ~20 um before the multi-layered MCP(Multi-Chip Packaging) process can be proceed. As the wafer gets thinner, though more layers can be stacked together by MCP, the targeted surface integrity of ground silicon wafer gets even more rigorously. A vitrified bond diamond grinding wheel of super-fine diamond powder (#30000) is developed in this study to tackle this problem. To prevent the wheel from frequent loading and subsequent dressing routines, polymethyl methacrylate (PMMA) micro-spheres were used as pore-forming agent to produce a grinding wheel with high porosity and large distributed pores. An optical dilatation analyzer was used to help optimize the sintering conditions of the grinding wheel and result showed that it could be done at a relatively low temperature of 550 ℃. This can greatly reduce the required energy consumption and time for wheel fabrication. It is also found in this research that the newly developed structured grinding wheel has good self-sharpening capability, low machining resistance, and long service life (Grinding Ratio ≥ 3 - 3.8). Wafers of surface roughness (Ra) around 4 nm and minimized visible surface scratches has been successfully produced in this study. This can greatly cut back the time required for subsequent chemical-mechanical polishing (CMP).
第三語言摘要
論文目次
致謝 I
中文摘要	IV
英文摘要	V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1前言 1
1-2研究動機 3
1-3研究目的 4
第二章 文獻回顧與理論基礎 5
2-1半導體材料特性介紹 5
2-1-1單晶矽晶圓製造過程 7
2-2精密磨削加工 10
2-2-1砂輪的組成 10
2-2-1-1磨料種類 11
2-2-1-2結合劑種類 13
2-2-1-3造孔劑種類 14
2-2-2砂輪的磨耗 14
2-2-3砂輪的修正 16
2-2-4砂輪的修銳 16
2-2-5砂輪填塞 17
第三章 研究方法與步驟 19
3-1研究規劃 19
3-2研究流程圖 20
3-3各項檢測說明 21
3-4實驗步驟 24
3-4-1制定燒結條件 24
3-4-2砂輪製作 26
3-4-3輪磨實驗 31
第四章 實驗材料與設備 34
4-1實驗材料 34
4-2實驗加工設備 41
4-3量測分析儀器 43
第五章 研究結果與討論 53
5-1砂輪配方之設計 53
5-1-1砂輪孔隙率 53
5-1-2砂輪造孔孔徑 55
5-1-3砂輪磨結比 56
5-2砂輪輪磨8英吋矽晶圓之結果 58
5-2-1粗加工晶圓之表面形貌 58
5-2-2精加工晶圓之表面形貌 60
第六章 結論 72
第七章 未來展望 73
參考文獻 75

圖2- 1 矽晶圓加工流程圖 [6] 8
圖2- 2 矽晶圓P、N型示意圖 [10] 10
圖2- 3 砂輪磨耗型態示意圖 [15] 15
圖2- 4 磨損的鍍鎳鑽石示意圖 [16] 16
圖2- 5 砂輪齒片修正示意圖 16
圖2- 6 砂輪齒片修銳示意圖 17
圖3- 1 研究流程圖 20
圖3- 2 SEM觀察砂輪齒片之斷面 21
圖3- 3 晶圓量測示意圖 22
圖3- 4 線粗糙度量測示意圖 22
圖3- 5 砂輪加工面積之示意圖 23
圖3- 6 熱分析PMMA微球 24
圖3- 7 熱分析陶瓷結合劑 25
圖3- 8 砂輪製作流程圖 26
圖3- 9 砂輪組裝過程 29
圖3- 10 砂輪內外徑修整 30
圖3- 11 砂輪加工面修整 30
圖3- 12 砂輪研磨流程 31
圖3- 13 砂輪安裝至主軸 31
圖3- 14 安裝晶舟 32
圖3- 15 砂輪修整盤 32
圖4- 1 #30000鑽石粉末 34
圖4- 2 陶瓷結合劑(D6) 35
圖4- 3 PMMA微球 5
圖4- 4 界面活性劑(105M) 36
圖4- 5 孔徑200 um之篩網 36
圖4- 6 離型劑 37
圖4- 7 砂輪齒片模具 37
圖4- 8 混粉機 38
圖4- 9 真空熱壓成型機 38
圖4- 10 高溫電爐 39
圖4- 11 8英吋再生晶圓 40
圖4- 12 CNC磨棒雕銑機 41
圖4- 13 臥軸迴轉平面磨床 42
圖4- 14 精密輪磨機 42
圖4- 15 可變真空掃描式電子顯微鏡(Hitachi,FlexSEM 1000) 43
圖4- 16 雷射共軛焦顯微鏡量測晶圓 45
圖4- 17 熱分析儀(TA Instruments,SDT650) 48
圖4- 18 光學膨脹分析儀(TA Instruments,ODP868) 49
圖4- 19 陶瓷體密度與孔隙率測試儀(TWS-300C) 51
圖4- 20 三點抗折測試 52
圖5- 1 樣品孔隙率量測數據 54
圖5- 2 樣品孔隙率 55
圖5- 3 不同磨結比樣品齒片圖 57
圖5- 4 磨結比抗折和收縮率結果 58
圖5- 5 粗加工後晶圓表面量測 58
圖5- 6 粗加工表面粗糙度結果 59
圖5- 7 粗加工之線粗糙度 59
圖5- 8 SEM觀察樣品的填塞狀況 60
圖5- 9 不同孔隙率樣品之三點抗折強度 61
圖5- 10 不同孔隙率樣品之砂輪性能 62
圖5- 11 不同孔隙率樣品粗糙度比較 63
圖5- 12 不同孔徑樣品之砂輪性能 64
圖5- 13 不同孔徑樣品粗糙度比較 65
圖5- 14 SEM觀察不同造孔孔徑樣品 66
圖5- 15 SEM觀察樣品GB3-P30-4的砂輪表面 66
圖5- 16 SEM&EDS觀察砂輪填塞情形 67
圖5- 17 不同孔徑之砂輪輪磨矽晶圓 68
圖5- 18 不同磨結比樣品之砂輪性能 68
圖5- 19 晶圓燒焦圖 69
圖5- 20 不同磨結比樣品粗糙度比較 70
圖5- 21 Confocal觀察磨結比樣品表面形貌 70
圖5- 22 Confocal觀察磨結比樣品的3D表面形貌 71
圖7- 1 精加工之線粗糙度 73
圖7- 2 用於輪磨12英吋之砂輪 74

表2- 1 半導體材料特性 [4] 6
表2- 2 超級磨料種類 [14] 12
表3- 1 精密輪磨加工參數 33
表4- 1 單晶矽之材料性質 40
表4- 2 掃描式電子顯微鏡(FlexSEM 1000)規格表 [25] 44
表4- 3 雷射共軛焦顯微鏡(LEXT OLS4100)規格表 [26] 46
表4- 4 熱分析儀(SDT650)規格表 [27] 48
表4- 5 光學膨脹分析儀(ODP868) [28] 50
表4- 6 TWS-300C規格表 [29] 51
表4- 7 萬能試驗機(HT-2402)規格表 [30] 52
表5- 1 孔隙率樣品表 53
表5- 2 造孔孔徑樣品表 56
表5- 3 不同孔隙率樣品砂輪磨耗計算 62
表5- 4 不同孔徑樣品砂輪磨耗計算 64
表5- 5 不同磨結比樣品砂輪磨耗計算 69

參考文獻
[1]"Very-large-scale integration." https://zh.wikipedia.org/zh-tw/%E8%B6%85%E5%A4%A7%E8%A7%84%E6%A8%A1%E9%9B%86%E6%88%90%E7%94%B5%E8%B7%AF, 2022.
[2]Z. Zhang, F. Huo, Y. Wu, and H. Huang, "Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material," International Journal of Machine Tools and Manufacture, vol. 51, no. 1, pp. 18-24, 2011.
[3]B. Y. Tsui. "碳化矽元件技術之近況與展望." https://www.ma-tek.com/zh-TW/Tech_Article/detail/specialist-column/all/202203-IAR , 2022.
[4]W. H. Chang, Y. C. Huang, and R. J. Lin, "Applications of Single Crystal SiC in Microelectronic Devices and Microsensors," 科儀新知第二十四卷第四期, 2003.
[5]"矽(Silicon)元素." https://highscope.ch.ntu.edu.tw/wordpress/?p=4972, 2022.
[6]Z. Pei, S. Billingsley, and S. Miura, "Grinding induced subsurface cracks in silicon wafers," International Journal of Machine Tools and Manufacture, vol. 39, no. 7, pp. 1103-1116, 1999.
[7]G. S. May, Fundamentals of semiconductor fabrication, Wiley, New York, 2004.
[8]V. Z. Peter, Microchip fabrication, McGraw-Hill Education, New York, 2000.
[9]Z. J. Pei, G. R. Fisher, and J. Liu, "Grinding of silicon wafers: a review from historical perspectives," International Journal of Machine Tools and Manufacture, vol. 48, no. 12-13, pp. 1297-1307, 2008.
[10]J. D. Rachwal, "X-ray diffraction applications in thin films and (100) silicon substrate stress analysis," University of South Florida, 2010.
[11]Y. G. Hou, G. Y. Qiao, Y. Shang, W. J. Zou, F. R. Xiao, and B. Liao, "Effect of porosity on the grinding performance of vitrified bond diamond wheels for grinding PCD blades," Ceramics International, vol. 38, no. 8, pp. 6215-6220, 2012.
[12]T. Tanaka, S. Esaki, K. Nishida, T. Nakajima, and K. Ueno, "Development and application of porous vitrified-bonded wheel with ultra-fine diamond abrasives," Key Engineering Materials, vol. 257: Trans Tech Publ, pp. 251-256, 2004. 
[13]X. F. Lu, Z. H. Li, Y. M. Zhu, J. S. Zhao, and G. T. Zhao, "Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond CBN grinding wheels," Ceramics International, vol. 39, no. 2, pp. 1893-1899, 2013.
[14]寶鑽實業有限公司. "超級磨料種類." https://www.taisunnetwork.com/?%E7%A3%A8%E6%96%99%E7%A8%AE%E9%A1%9E%EF%BC%88%E8%B6%85%E7%B4%9A%E7%A3%A8%E6%96%99%EF%BC%89,65 , 2022.
[15]M. Alfares and A. Elsharkawy, "Effect of grinding forces on the vibration of grinding machine spindle system," International Journal of Machine Tools and Manufacture, vol. 40, no. 14, pp. 2003-2030, 2000.
[16]S. Luo, "Effect of fillers of resin-bonded composites on diamond retention and wear behavior," Wear, vol. 236, no. 1-2, pp. 339-349, 1999.
[17]K. Carlisle and M. A. Stocker, "Cost-effective machining of brittle materials (glasses and ceramics) eliminating/minimizing the polishing process," Micro-optical Technologies for Measurement, Sensors, and Microsystems II and Optical Fiber Sensor Technologies and Applications, vol. 3099: SPIE, pp. 46-58, 1997. 
[18]J. H. Liu, Z. J. Pei, and G. R. Fisher, "ELID grinding of silicon wafers: a literature review," International Journal of Machine Tools and Manufacture, vol. 47, no. 3-4, pp. 529-536, 2007.
[19]H. K. Tönshoff, W. v. Schmieden, I. Inasaki, W. König, and G. Spur, "Abrasive machining of silicon," CIRP annals, vol. 39, no. 2, pp. 621-635, 1990.
[20]H. Ohmori, I. Takahashi, and B. P. Bandyopadhyay, "Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding," Journal of materials processing technology, vol. 57, no. 3-4, pp. 272-277, 1996.
[21]N. Itoh, H. Ohmori, S. Moriyasu, T. Kasai, T. K. Doy, and B. P. Bandyopadhyay, "Finishing characteristics of brittle materials by ELID-lap grinding using metal-resin bonded wheels," International Journal of Machine Tools and Manufacture, vol. 38, no. 7, pp. 747-762, 1998.
[22]N. Itoh and H. Ohmori, "Grinding characteristics of hard and brittle materials by fine grain lapping wheels with ELID," Journal of Materials Processing Technology, vol. 62, no. 4, pp. 315-320, 1996.
[23]C.-L. Chao, K. Ma, D. Liu, S. Sheu, Y. Lin, and H. Lin, "A study on the surface integrity of single crystal silicon ground by CIFB-diamond wheels (ELID) and resin-bonded diamond wheels," Initiatives of Precision Engineering at the Beginning of a Millennium, pp. 376-380, 2002.
[24]W. Miao, Y. Ding, Y. Zhao , H. Bao, N. Yan, W. Yang, Z. Hui and B. Liu, "Modified gel casting technique to fabricate honeycomb structured vitrified-bonded ultrafine diamond grinding wheels," Ceramics International, vol. 46, no. 4, pp. 4462-4469, 2020.
[25]"FlexSEM 1000 specifications." https://leftcoastinstruments.com/project/flex-sem/ , 2022.
[26]"LEXT OLS4100 specifications." https://www.yuanyu.tw/yuanli/upload/doc/products_1472029791.pdf , 2022.
[27]I. TA Instruments. "SDT-650 datasheet." https://www.tainstruments.com/sdt-650/?lang=zh-hant , 2022.
[28]I. TA Instruments, "ODP868 datasheet." http://www.tainstruments.com/wp-content/uploads/DIL-868-cut-sheet.pdf, 2022.
[29]"TWS-300 datasheet." https://www.group-up.com.tw/?63,%E6%A9%A1%E8%86%A0%E5%AF%86%E5%BA%A6%E6%B8%AC%E8%A9%A6%E5%84%80-tws-300-600e , 2022.
[30]"萬能試驗機(HT-2402 Series )datasheet." http://www.hungtathai.com/pdf/ht-2402.pdf , 2022.
[31]R. Brodmann, B. Brodmann, K. Konovalenko, C. Wiehr, C.-h. Huang, and Y.-l. Chen, "Fast and precise surface measurement of back-grinding silicon wafers," Solid State Technology, vol. 60, no. 4, pp. 18-23, 2017.
[32]K. Li, Q. Guo, M. Liu, Y. Zhao, and D. Shi, "A study on pore-forming agent in the resin bond diamond wheel used for silicon wafer back-grinding," Procedia Engineering, vol. 36, pp. 322-328, 2012.
[33]G. Li, C. Xiao, S. Zhang, R. Sun, and Y. Wu, "An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing," Journal of Materials Processing Technology, vol. 301, 2022.
論文全文使用權限
國家圖書館
不同意無償授權國家圖書館
校內
校內紙本論文延後至2027-06-01公開
電子論文全文不同意授權
校內書目立即公開
校外
不同意授權予資料庫廠商
校外書目立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信