§ Browsing ETD Metadata
  
System No. U0002-1707201213453000
Title (in Chinese) 動態價格跳躍與最小變異數避險組合的風險值-以英國布蘭特石油現貨與期貨價格為例
Title (in English) Dynamic Price Jump and Value-at-Risk for the Minimum Variance Hedging Portfolio: The Case of Brent Crude Oil Spot and Futures Price
Other Title
Institution 淡江大學
Department (in Chinese) 管理科學學系碩士班
Department (in English) Master’s Program, Department of Management Sciences
Other Division
Other Division Name
Other Department/Institution
Academic Year 100
Semester 2
PublicationYear 101
Author's name (in Chinese) 王植顥
Author's name(in English) Chih-Hao Wang
Student ID 699620950
Degree 碩士
Language Traditional Chinese
Other Language
Date of Oral Defense 2012-06-22
Pagination 30page
Committee Member advisor - Chung-Chu Chuang
co-advisor - Yi-Hsien Wang
co-chair - 林忠機
co-chair - 蔡蒔銓
co-chair - 婁國仁
Keyword (inChinese) 期貨
風險值
最小變異數避險組合
回顧測試
穿透次數
Keyword (in English) Futures
Value-at-Risk
Minimum Variance Hedging Portfolio
Backtesting
Failure Times
Other Keywords
Subject
Abstract (in Chinese)
投資產品的多元化,如何降低投資組合風險是件非常重要的課題。由於期貨市場與現貨市場具有高度相關,利用期貨契約規避市場現貨價格變動的衝擊,已成為投資者維持損益的關鍵。本研究以2010年至2011年布蘭特石油價格為主要研究對象利用Chan and Young(2006)提出的雙變量ARJI-GARCH(1,1)模型捕捉價格不連續的變動,且在95%及99%信賴水準下,比較未避險模型、雙變量GARCH(1,1)模型與雙變量ARJI- GARCH(1,1)模型的最小變異數避險組合的多頭部位風險值。將風險值和資產真實損益間進行比較,最後利用Kupiec(1995)概似比檢定與Christoffersen(1998)條件涵蓋檢定法評估風險值模型。研究結果發現:對風險值績效評估而言,未避險模型與雙變量GARCH(1,1)模型在顯著水準1%下的風險值績效皆未能通過回顧測試,而雙變量ARJI- GARCH(1,1)模型在顯著水準5%及1%下皆呈現顯著,表示此雙變量ARJI-GARCH (1,1)模型能確切地捕捉到厚尾及價格不連續的特性,此結果可為金融機構來評估資產組合下的風險,其能改善在尾部分佈下的風險值估計效能,並捕捉金融資產報酬的波動性叢聚、厚尾及價格不連續等特性。
Abstract (in English)
How to reduce portfolio risk an very important issue based on diversification of investment products. A highly relationship was shown on futures and spot market, so making use of futures contracts to avoid the spot market changes in price shocks has become the key to investors to maintain the profit and loss. The study is to compute Value-at-Risk in the long trading position for the minimum variance hedging portfolio by using GARCH(1,1) model, bivariate GARCH (1,1) model and bivariate ARJI-GARCH(1,1) model at two significant levels. The sample daily data is Brent crude oil closing price in spot and furtures market. Moreover, the study is to evaluate the different models by using backtesting method based on likelihood ratio test proposed by Kupiec (1995) and Christoffersen(1998). The study showed that the bivariate ARJI-GARCH (1,1) model at the significance level of 5% and 1% are statistically significant, indicating that the bivariate ARJI-GARCH(1,1) model can accurately describe the discontinuous characteristics of the fat tail and price. This result can provide valuable information  for financial institutions to assess the portfolio risk. It improves the estimated performace under the tail distribution and further forecast the financial asset return volatility, fat tail, and the discontinuous price.
Other Abstract
Table of Content (with Page Number)
目錄

目錄   Ⅰ  
表目錄 Ⅱ
圖目錄 Ⅲ
1.  緒論 1
1.1 研究背景與動機 1
1.2 研究目的  4
1.3 研究架構  4
2.  樣本與方法 6
2.1 研究樣本  6
2.2 實證模型  6
2.3 條件最小變異數比率 9
2.4 條件風險值 10
2.5 回顧測試法 12
3. 實證結果分析 15
3.1 基本敘述統計分析 15
3.2  ARJI-GARCH(1,1)模型的參數估計 17
3.3 條件風險值績效衡量與分析 18
4. 結論與建議  23
4.1 結論 23
4.2 建議 24
參考文獻 26

表目錄

表3-1  日資料報酬基本統計分析 16
表3-2  GARCH(1,1)與ARJI-GARCH(1,1)模型參數估計 17
表3-3  最小變異數避險組合的避險比率 20
表3-4  最小變異數避險組合的條件風險值評估績效 21
 
圖目錄

圖1-1 研究流程	5
圖3-1 日資料價格及日資料報酬時間序列走勢圖 15
圖3-2 樣本外一天風險值預測之移動視窗法 19
圖3-3 ARJI-GARCH(1,1)模型的最小變異數避險組合波動性時間走勢圖 22
References
中文文獻

1.邱哲修、林卓民、洪瑞成與柯月華,2005。價格跳躍與避險策略之探討-以道瓊工業指數現貨與期貨為例,經營管理論叢,第一卷,第二期,頁93-116。

2.胥愛琦 與 吳清豐,2003。台灣股市報酬與匯率變動之波動性外溢效果-雙變量EGARCH模型的應用,台灣金融財務季刊,第四卷,第三期,頁87-103。

3.黃聖志、蘇欣玟與杜國賓,2008。避險基金指數之風險值探討,商管科技季刊,第九卷,第三期,頁277-300。

4.劉洪鈞、黃聖志與王怡文 (2008)。西德州與布蘭特原油避險策略,真理財經學報,第十八期,頁71-98。

5.蘇榮斌,2010,美國原油市場之風險值預測,中華科技大學學報,第四十二期,頁161-175。

英文文獻

1.Angelidis, T., A. Benos and S. Degiannakis, 2007, A Robust VaR Model under Different Time Periods and Weighting Schemes, Review of Quantitative Finance and Accounting, 28, 2, pp. 187-201.

2.Bates, D. S., 1996, Jump and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options, Review of Financial Studies, 9, 1, pp. 69-107.

3.Bollerslev, T., 1986, Generalized Autoregressive Conditional Heteroskedasticity,Journal of Econometrics, 31, 3, pp. 307-327.

4.Bollerslev, T., 1987, A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return, Review of Economics and Statistics, 69,3, pp. 542-547.

5.Brooks, C., A. D. Clare, J. W. D. Molle and G. Persand, 2005, A Comparison of Extreme Value Theory Approaches for Determining Value at Risk, Journal of Empirical Finance, 12, 2, pp. 339-352.

6.Campbell, R. A. and R. Kraussl, 2007, Revisiting the Home Bias Puzzle Downside Equity Risk, Journal of International Money and Finance, 26, 7,pp. 1239- 1260.

7.Chan, W. H., 2009, Optimal Hedge Ratios in the Presence of Common Jumps,Journal of Futures Markets, 30, 8, pp. 801-807.

8.Chan, W. H. and D. Young, 2006, Jumping Hedges: An Examination of Movements in Copper Spot and Futures Markets,Journal of Futures Markets, 26, 2, pp. 169-188.

9.Chan, W. H. and J. M. Maheu, 2002, Conditional Jump Dynamics in Stock Market Returnsm, Journal of Business and Economic Statistics, 20, 3,pp. 377-389.

10.Chen, S. W. and C. H. Shen, 2004, GARCH, Jumps and Permanent and Transitory Components of Volatility: The Case of the Taiwan Exchange rate, Mathematics and Computers in Simulation, 67, 3, pp. 201-216. 

11.Christoffersen, P. F., 1998, Evaluating Interval Forecasts, International Economic Review, 39, 4, pp. 841-862

12.Cremers, J., M. Kritzman and S. Page, 2005, Optimal Hedge Fund Allocations, Journal of Portfolio Management, 31, 3, pp. 70-81.

13.Das, S. R. and K. Sundaram, 1999, Of Smiles and Smirks: A Term Structure Perspective, journal of Financial and Quantitative Analysis, 34, 2, pp. 211-239.

14.Engle, R. F., 1982, Autoregressive Conditional Heteroskeddasticity with Estimates of Variance of UK Inflation, Econometrica, 50, 4, pp. 987-1008.

15.Engle, R. F. and K. F. Kroner, 1995, Multivariate Simultaneous Generalized ARCH, Econometric Theory, 11, 1, pp. 122-150.

16.Escanciano, J. C. and J. Olmo, 2010,Robust Backtesting Test for Value-at-Risk Models, Journal of Financial Econometrics, 9, 1, pp. 132–161.

17.Giot, P. and S. Laurent, 2004, Modelling daily Value-at-Risk Using Realized   Volatility and ARCH Type Models, Journal of Empirical Finance, 11, 3, pp.379-398.

18.Gupta, A. and B. Liang, 2005, Do Hedge Funds Have Enough Capital? A Value-at-Risk Approach, Journal of Financial Economices, 77, 1, pp. 219-253.

19.Jarque, C. M. and A. K. Bera, 1987, A Test for Normality of Observations and Regression Residuals, International Statistical Review, 55, 2, pp. 163-172.

20.Johnson, L. L., 1960, The Theory of Hedgeing and Speculation in Commodity Futures, Review of Economic Studies, 27, 3, pp. 139-151.

21.Jorion, P., 1988, On Jump Processes in the Foreign Exchange and Stock Markets,Review of Financial Studies, 1, 4, pp. 427-445.

22.Jorion, P., 1996. Risk : Measuring the Risk in Value at Risk, Financial Analysis Journal, 52, 6, pp. 47 -56.

23.Kupiec, P., 1995, Techniques for Verifying the Accuracym of Risk Management Models, Journal of Derivatives, 3, pp. 73-84.

24.Lee, Y. H., H. N. Hu and J. S. Chiou, 2010, Jump Dynamics with Structural Breaks for Crude Oil Prices, Energy Economics, 32, 2, pp. 343–350.

25.Lenza, A., M. Manera and M. McAleerd, 2006, Modeling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns, Finance Research Letters, 3, 2, pp. 114-132.

26.Lu, X., K. Maekawa and K. Kawai, 2006, Estimating Bivariate GARCH-Jump Model Based on High Frequency Data: The Case of Revaluation of Chinese Yuan in July 2005, Asia Pacific Journal of Operational Research, 27, 2, pp. 287-300.

27.Lunde, A., O. E. B. Nielsen, P. R. Hansen and N. Shephard,2011, Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise Andnon-Synchronous Trading, Journal of Econometrics, 162, 2, pp. 149-169.

28.Rockafellar, R. T. and S. Uryasev, 2000, Optimization of Conditional Value-at-Risk, Journal of Risk, 7, 2, pp. 21-41.

29.Rombouts, J. V. K. and M. Verbeek, 2009, Evaluating portfolio Value-at-Risk Using Semi-Parametric GARCH Models, Quantitative Finance, 9,6, pp. 737-745.

30.Samia, M., M. Dalenda and A. Saoussen, 2009, Accuracy and Conservatism of VaR Models: A Wavelet Decomposed VaR Approa versus Standard ARMA-GARCH Method, International Journal of Economics and Finance, 1, 2, pp. 174-184.

31.Teo, M., 2009, The Geography of Hedge Funds, Review of Financial Studies, 22, 9, pp. 3531-3561.

32.Tsafack, G., 2009, Asymmetric Dependence Implications for Extreme Risk Management, Journal of Derivatives, 17, 1, pp. 7-20.

33.Wang, Y., C. Wu and Y. Wei (2011). Can GARCH-Class Models Capture Long Memory in WTI Crude Oil Markets? Economic Modelling, 28, 3, pp. 921-927.

34.Wong, W. K., 2010, Backtesting Value-at-Risk Based on Tail Losses, Journal of Empirical Finance, 17, 3, pp. 526-538.

35.Yang, M. J. and Y. C. Lai, 2008, The Hedging Effectiveness of Stock Index Futures for Alternative Models and Hedging Strategies, Journal of Futures and Options, 1, 1, pp. 109-140.
Terms of Use
Within Campus
On-campus access to my hard copy thesis/dissertation is open immediately
Duration for delaying release from 5 years.
Outside the Campus
I grant the authorization for the public to view/print my electronic full text with royalty fee and I donate the fee to my school library as a development fund.
Duration for delaying release from 5 years.
 Top

If you have any questions, please contact us!

Library: please call (02)2621-5656 ext. 2487 or email