系統識別號 | U0002-1706202522481100 |
---|---|
DOI | 10.6846/tku202500266 |
論文名稱(中文) | 價格跳躍、交易員情緒與市場風險 |
論文名稱(英文) | Price Jumps, Trader Sentiment, and Market Risk |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 財務金融學系博士班 |
系所名稱(英文) | Department of Banking and Finance |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 113 |
學期 | 2 |
出版年 | 114 |
研究生(中文) | 張雪兒 |
研究生(英文) | Xueer Zhang |
學號 | 810534015 |
學位類別 | 博士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2025-05-25 |
論文頁數 | 69頁 |
口試委員 |
指導教授
-
邱建良(100730@mail.tku.edu.tw)
共同指導教授 - 洪瑞成(hung660804@gmail.com) 口試委員 - 王譯賢 口試委員 - 姜淑美 口試委員 - 張鼎煥 口試委員 - 林惠文 口試委員 - 林允永 口試委員 - 黃健銘 |
關鍵字(中) |
價格跳躍 波動率預測 交易員情緒 崩盤風險 |
關鍵字(英) |
Price Jumps Volatility Forecasting Trader Sentiment Crash Risk |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本研究探討美國公債期貨市場中的風險評估與市場行為,涵蓋兩大主題:「價格跳躍在波動率預測中的重要性」與「交易員情緒指數對市場報酬與崩盤風險的影響」。 第一部分分析不同利率環境下價格跳躍對波動率預測的影響,並透過統計與波動性時機策略兩種方法進行樣本外評估。結果顯示,納入跳躍項的模型在預測效能上顯著優於基準模型,特別是在利率急升期間,且經跳躍檢定、交易成本與再平衡測試後具穩健性。 第二部分利用CFTC的COT資料建構三類交易人的情緒指數,探討其對市場報酬與崩盤風險的影響。實證顯示,情緒指標在不同利率環境下對報酬與風險的影響具有異質性,極端情緒尤具預測意涵。 |
英文摘要 |
This study examines risk and behavior in the U.S. Treasury futures market, focusing on two themes: the role of price jumps in volatility forecasting and the impact of trader sentiment on returns and crash risk. The first part evaluates how price jumps affect forecast accuracy under different rate environments, using statistical and volatility timing methods. Models with jump components outperform benchmarks, especially during sharp rate hikes, and results are robust to jump tests, transaction costs, and rebalancing. The second part constructs sentiment indices for three trader types using CFTC’s COT data. Findings show that sentiment has heterogeneous effects on returns and crash risk across rate environments, with extreme sentiment offering strong predictive value. |
第三語言摘要 | |
論文目次 |
TABLE OF CONTENTS PART I 1 Abstract 2 CHAPTER 1 INTRODUCTION 3 1.1 Research Background and Motivation 3 1.2 Research Objectives and Research Questions 4 1.3 Research Methodology, Data, and Main Findings 4 CHAPTER 2 LITERATURE REVIEW 6 CHAPTER 3 Data and econometric methodology 8 3.1 Data description 8 3.2 Econometric methodology 10 3.2.1 Nonparametric jump tests 10 3.2.2 HAR-based volatility forecasting models 13 3.2.3 Economic value of volatility timing strategy 15 CHAPTER 4 Empirical results and analysis 18 4.1 Descriptive statistics of realized volatility estimators 18 4.2 HAR Statistical evaluation of volatility forecasts 21 4.3 Economic evaluation of volatility forecasts 26 4.4 Transaction cost and rebalancing strategy 29 CHAPTER 5 CONCLUSIONS 34 References 35 PART II 39 Abstract 40 CHAPTER 1 INTRODUCTION 41 1.1 Background and Market Context 41 1.2 Research Gap and Objectives 41 1.3 Contribution and Structure 43 CHAPTER 2 LITERATURE REVIEW 44 CHAPTER 3 Data and econometric methodology 46 3.1 Data 46 3.2 Variable Definitions 46 3.21 Futures Returns 46 3.22 Trader Sentiment Index 46 3.23 Extreme Sentiment Variables 47 3.3 Estimation Methodology 48 3.31 Trader Sentiment and Future Market Returns 48 3.32 Trader Sentiment and Market Crash Risk 48 3.33 Statistical Estimation and Robustness Checks 50 CHAPTER 4 Empirical results and analysis 51 CHAPTER 5 CONCLUSIONS 65 References 68 LIST OF TABLES PART I Table 1. Descriptive statistics of daily returns for 2-, 5-, 10-year Treasury note futures 10 Table 2. Descriptive statistics of realized volatility estimators for 2-, 5-, 10-year Treasury note futures 19 Table 3. Key macroeconomic events (2021-2023) 20 Table 4. Estimation results of HAR-based models 22 Table 5. Statistical evaluation of HAR-based volatility forecasts 24 Table 6. Economic values of volatility timing strategy 28 Table 7. Economic values of volatility timing strategy with transaction costs 30 Table 8. Economic values of volatility timing strategy with alternative rebalancing strategy 32 PART II Table 1. Summary Statistics (2010.1-2024.12) 53 Table 2. Predictive Regressions of Treasury Futures Returns on Trader Sentiment Indices (2022.1–2024.8) 55 Table 3. Predictive Regressions of Crash Risk on Trader Sentiment Indices 57 Table 4. Predictive Power of Extreme Sentiment on Treasury Futures Returns During the Moderate Rate Hike Period (2016–2018) 58 Table 5. Predictive Power of Extreme Sentiment on Treasury Futures Returns During the Aggressive Rate Hike Period (2022–2023) 63 LIST OF FIGURES Fig 1. Daily average trading volumes of US Treasury note futures 9 |
參考文獻 |
part1 Amstrong, W. J., Cardella, L., & Sabah, N. (2021). Information shocks, disagreement, and drift. Journal of Financial Economics, 140(3), 916-940. Andersen, T. G., Bollerslev, T., Diebold, F. X., & Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics, 61(1), 43-76. Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. Review of Economics and Statistics, 89 (4), 701-720. Andersen, T. G., Dobrev, D., & Schaumburg, E. (2012). Jump-robust volatility estimation using nearest neighbor truncation. Journal of Econometrics, 169(1), 75-93. Balduzzi, P., Elton, E. J., & Green, T. C. (2001). Economic news and bond prices: evidence from the U.S. Treasury market. Journal of Financial and Quantitative Analysis, 36(4), 523-543. Bandi, F., Russell, J., & Zhu, Y. (2008). Using high-frequency data in dynamic portfolio choice. Econometric Reviews, 27(1-3), 163-198. Barndorff-Nielsen, O. E., & Shephard, N. (2002a). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B, 64(2), 253-280. Barndorff-Nielsen, O. E., & Shephard, N. (2002b). Estimating quadratic variation using realized variance. Journal of Applied Econometrics, 17(5), 457-477. Barndorff-Nielsen, O. E., & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2(1), 1-37. Barndorff-Nielsen, O. E., & Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics, 4(1), 1-30. Chen, Y. L. (2023). The crucial role of the five-year Treasury in the US yield curve. International Review of Financial Analysis, 90, 102828. Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174-196. Corsi, F., Pirino, D., & Reno, R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159(2), 276-288. Cremers, M., Fleckenstein, M., & Grandhi, P. (2021). Treasury yield implied volatility and real activity. Journal of Financial Economics, 140, 412-435. Das, S. (1999). The surprise element: jumps in interest rate diffusions. Mimeo, Harvard Univ. Das, S., & Foresi, D. (1996). Exact solutions for bond and option prices with systematic jump risk. Review of Derivatives Research, 1, 7-24. Das, S. R. (2002). The surprise element: jumps in interest rates. Journal of Econometrics, 106, 27-65. Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13(3), 253-263. Dungey, M., McKenzie, M., & Smith, L. V. (2009). Empirical evidence on jumps in the term structure of the US Treasury market. Journal of Empirical Finance, 16, 430-445. Engle, R. F., & Colacito, R. (2006). Testing and valuing dynamic correlations for asset allocation. Journal of Business and Economic Statistics, 24, 238-253. Fleming, J., Kirby, C., & Ostdiek, B. (2001). The economic value of volatility timing. Journal of Finance, 56(1), 329-352. Fleming, J., Kirby, C., & Ostdiek, B. (2003). The economic value of volatility timing using “realized” volatility. Journal of Financial Economics, 67(3), 473-509. Green, T. C. (2004). Economic news and the impact of trading on bond prices. Journal of Finance, 59(3), 1201-1233. Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics, 23, 365-380. Huang, X., & Tauchen, G. (2005). The relative contribution of jumps to total price variance. Journal of Financial Econometrics, 3(4), 456-499. Jiang, I. M., Hung, J. C., & Wang, C. S. (2014). Volatility forecasts: Do volatility estimators and evaluation methods matter? Journal of Futures Markets, 34(11), 1077-1094. Jiang, G. J., Lo, I., & Verdelhan, A. (2011). Information shocks, liquidity shocks, jumps, and price discovery: evidence from the U.S. Treasury market. Journal of Financial and Quantitative analysis, 46(2), 527-551. Kambouroundis, D. S., McMillan, D. G., & Tsakou, K. (2021). Forecasting realized volatility: The role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility. Journal of Futures Markets, 41(10), 1618-1639. Kim, R. (2024). Hedging securities and Silicon Valley Bank idiosyncrasies. Journal of Futures Markets, 44(4), 653-672. Kroner, K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative analysis, 28(4), 535-551. Liu, J., Ma, F., Yang, K., & Zhang, Y. (2018). Forecasting the oil futures price volatility: Large jumps and small jumps. Energy Economics, 72, 321-330. Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica, 59(5), 1279-1313. Marquering, W., & Verbeek, M. (2004). The economic value of predicting stock index returns and volatility. Journal of Financial and Quantitative Analysis, 39(2), 407-429. Martens, M., & van Dijk, D. (2007). Measuring volatility with the realised range. Journal of Econometrics, 138(1), 181-207. Nolte, I., & Xu, Q. (2015). The economic value of volatility timing with realized jumps. Journal of Empirical Finance, 34, 45-59. Özbekler, A. G., Kontonikas, A., & Triantafyllou, A. (2021). Volatility forecasting in European government bond market. International Journal of Forecasting, 37(4), 1691-1709. Paris, C., & Lazo, A. (2021). California Supply Chain Crisis Deepens as Ports Face New Threat of Labor Unrest. URL https://www.wsj.com/articles/californiasupply-chain-la-port-shipping-container-storage-becerra-newsom-biden-ab5-11636056049. Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1), 246-256. Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89, 1303-1313. Prokopczuk, M., Symeonidis, L., & Wese Simen, C. (2016). Do jumps matter for volatility forecasting? Evidence from energy markets. Journal of Futures Markets, 36(8), 758-792. Simpson, M. W., & Ramchander, S. (2004). An examination of the impact of macroeconomic news on the spot and futures treasuries markets. Journal of Futures Markets, 24(5), 453-478. Tauchen, G., & Zhou, H. (2011). Realized jumps on financial markets and predicting credit spreads. Journal of Econometrics, 160(1), 102-118. Zhou, H., & Zhu, J. Q. (2012). An empirical examination of jump risk in asset pricing and volatility forecasting in China’s equity and bond markets. Pacific-Basin Finance Journal, 20(5), 857-880. part2 Baker, M., & Wurgler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129-151. Baur, D. G., & Smales, L. A. (2022). Trading behavior in bitcoin futures: Following the “smart money”. Journal of Futures Markets, 42(7), 1304-1323. Chen, J., Hong, H., & Stein, J. C. (2001). Forecasting crashes: Trading volume, past returns, and conditional skewness in stock prices. Journal of Financial Economics, 61(3), 345-381. Connolly, R. A. (1991). A posterior odds analysis of the weekend effect. Journal of econometrics, 49(1-2), 51-104. Ding, W., Mazouz, K., & Wang, Q. (2019). Investor sentiment and the cross-section of stock returns: new theory and evidence. Review of Quantitative Finance and Accounting, 53, 493-525. Fu, J., Wu, X., Liu, Y., & Chen, R. (2021). Firm-specific investor sentiment and stock price crash risk. Finance Research Letters, 38, 101442. Jeffreys, H. (1961). Theory of Probability, third ed. Oxford University Press, London. Jiang, F., Lee, J., Martin, X., & Zhou, G. (2019). Manager sentiment and stock returns. Journal of Financial Economics, 132(1), 126-149. Kim, Y., Li, H., & Li, S. (2014). Corporate social responsibility and stock price crash risk. Journal of Banking & Finance, 43, 1-13. Newey, W., West, K., 1987. A simple positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55, 703–708. Shi, S. (2022). Bitcoin futures risk premia. Journal of Futures Markets, 42(12), 2190-2217. Solt, M. E., & Statman, M. (1988). How useful is the sentiment index?. Financial Analysts Journal, 44(5), 45-55. Wang, C. (2001). Investor sentiment and return predictability in agricultural futures markets. Journal of Futures Markets, 21(10), 929-952. Wang, C. (2003). The behavior and performance of major types of futures traders. Journal of Futures Markets, 23(1), 1-31. Wang, C. (2004). Futures trading activity and predictable foreign exchange market movements. Journal of Banking & Finance, 28(5), 1023-1041. Yin, Y., & Tian, R. (2017). Investor sentiment, financial report quality and stock price crash risk: Role of short-sales constraints. Emerging Markets Finance and Trade, 53(3), 493-510. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信