系統識別號 | U0002-1607202415242400 |
---|---|
DOI | 10.6846/tku202400517 |
論文名稱(中文) | 在二階段試驗中,納入短期臨床指標以進行期中決策的策略 |
論文名稱(英文) | A strategy for incorporating short-term endpoints in interim decision making of two-stage trials with binary endpoints. |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 數學學系數學與數據科學碩士班 |
系所名稱(英文) | Master's Program, Department of Mathematics |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 馬任萱 |
研究生(英文) | Jen-Hsuan Ma |
學號 | 611190116 |
學位類別 | 碩士 |
語言別 | 英文 |
第二語言別 | |
口試日期 | 2024-07-09 |
論文頁數 | 32頁 |
口試委員 |
指導教授
-
姜杰(159606@o365.tku.edu.tw)
口試委員 - 蕭金福 口試委員 - 溫啟仲 |
關鍵字(中) |
期中分析 提早停止試驗 多重評估指標 |
關鍵字(英) |
interim analysis early stopping for efficacy multiple endpoint |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
目前已有許多統計方法考量於期中分析時,使用短期臨床試驗指標協助評估長期臨床試驗指標的有效性,然而這些研究並無估計兩種臨床試驗指標之相關性。因此本研究發展一於期中分析時,若長期與短期臨床試驗指標之樣本相關性夠高,則納入短期臨床試驗指標之資訊,以協助長期臨床試驗指標之有效性評估方法。透過模擬研究證實我們所提出的統計方法在不同的參數組合之下,大致可以有效控制期中分析之型一錯誤率,並且也調查了樣本數與檢定力之間的關係。最後我們對整篇研究進行討論及總結,並提出未來可能延伸的方向。 |
英文摘要 |
Several statistical methods have been developed using the short-term endpoint in interim analysis to help assess the long-term endpoint. However, these studies have not estimated the correlation between the two endpoints. Therefore, we propose a study such that, if the sample correlation between the two endpoints is high enough, the information of the short-term endpoint will be included in the assessment of the long-term endpoint. Simulation confirms that the proposed statistical method controls the Type I error rate roughly under different combinations of parameters components, while we also investigate the relationship between power and sample size. Finally, we have discussion for the proposed method and future works are pointed out. |
第三語言摘要 | |
論文目次 |
CONTENTS IV CONTEMTS OF TABLE V CONTEMTS OF FIGURE VI 1 INTRODUCTION 1 2 THE PROPOSED METHOD 3 2.1 STATISTICAL MODEL 3 2.2 INTERIM ANALYSES 6 3. SIMULATION 12 3.1 COMPARISON WITH MARSCHNER AND BECKER[2] METHOD 12 3.2 TYPE I ERROR STUDY 17 3.3 POWER STUDY 22 4. DISCUSSION 27 APPENDIX 30 REFERENCES 32 CONTEMTS OF TABLE TABLE 1. DISTRIBUTION OF THE RESPONSES BY THE BINARY OUTCOMES FOR LONG-TERM AND SHORT-TERM ENDPOINTS. 5 TABLE 2. A COMPARISON OF THE EMPIRICAL TYPE I ERROR RATE OF THE PROPOSED METHOD WITH THE MB METHOD. 15 TABLE 3. SIMULATION RESULT OF THE CONTROL OF THE TYPE I ERROR RATE FOR THE INTERIM ANALYSIS WHEN , , WHERE . 18 TABLE 4. SIMULATION RESULT OF THE CONTROL OF THE TYPE I ERROR RATE FOR THE INTERIM ANALYSIS WHEN , , WHERE . 19 TABLE 5. SIMULATION RESULT OF THE CONTROL OF THE TYPE I ERROR RATE FOR THE INTERIM ANALYSIS WHEN , , WHERE . 20 TABLE 6. SIMULATION RESULT OF THE DIFFERENCE BETWEEN THE EMPIRICAL POWER AND THEORETICAL POWER OF THE PROPOSED METHOD WHEN FIXED , , , . 23 TABLE 7. SIMULATION RESULT OF THE DIFFERENCE BETWEEN THE EMPIRICAL POWER AND THEORETICAL POWER OF THE PROPOSED METHOD WHEN FIXED , . 24 CONTEMTS OF FIGURE FIGURE 1. DECISION FLOWCHART FOR INTERIM ANALYSIS BASED ON THE PROPOSED METHOD. 11 FIGURE 2.HISTOGRAMS OF THE EMPIRICAL TYPE I ERROR RATE OF THE PROPOSED METHOD AND MB METHOD. 16 FIGURE 3. HISTOGRAM OF EMPIRICAL TYPE I ERROR RATE BASE ON DIFFERENT SAMPLE SIZES FOR THE PROPOSED METHOD. 21 FIGURE 4. THE EMPIRICAL POWER CURVE AND THEORETICAL POWER CURVE WITH DIFFERENT CORRELATION AND GREEN CURVES ARE EMPIRICAL POWER CURVES AND BLUE CURVES ARE THE THEORETICAL POWER CURVES AND FIXED AND BY THE PROPOSED METHOD. 25 FIGURE 5. THE EMPIRICAL POWER CURVE AND THEORETICAL POWER CURVE WITH DIFFERENT CORRELATION AND GREEN CURVES ARE EMPIRICAL POWER CURVES AND BLUE CURVES ARE THE THEORETICAL POWER CURVES AND FIXED AND BY THE PROPOSED METHOD. 26 |
參考文獻 |
1. Friede, T., et al., Designing a seamless phase II/III clinical trial using early outcomes for treatment selection: an application in multiple sclerosis. Statistics in medicine, 2011. 30(13): p. 1528-1540. 2. Marschner, I.C. and S.L. Becker, Interim monitoring of clinical trials based on long‐term binary endpoints. Statistics in medicine, 2001. 20(2): p. 177-192. 3. Niewczas, J., C.U. Kunz, and F. König, Interim analysis incorporating short‐and long‐term binary endpoints. Biometrical Journal, 2019. 61(3): p. 665-687. 4. Stallard, N., A confirmatory seamless phase II/III clinical trial design incorporating short‐term endpoint information. Statistics in medicine, 2010. 29(9): p. 959-971. 5. Friede, T., N. Stallard, and N. Parsons, Seamless phase II/III clinical trials using early outcomes for treatment or subgroup selection: methods and aspects of their implementation. arXiv preprint arXiv:1901.08365, 2019. 6. Stallard, N., et al., Flexible selection of a single treatment incorporating short‐term endpoint information in a phase II/III clinical trial. Statistics in medicine, 2015. 34(23): p. 3104-3115. 7. Kunz, C.U., et al., A comparison of methods for treatment selection in seamless phase II/III clinical trials incorporating information on short-term endpoints. Journal of biopharmaceutical statistics, 2015. 25(1): p. 170-189. 8. Zocholl, D., C.U. Kunz, and G. Rauch, Using short-term endpoints to improve interim decision making and trial duration in two-stage phase II trials with nested binary endpoints. Statistical Methods in Medical Research, 2023. 32(9): p. 1749-1765. 9. Jennison, C. and B.W. Turnbull, Group sequential methods with applications to clinical trials. 1999: CRC Press. 10. O'Brien, P.C. and T.R. Fleming, A multiple testing procedure for clinical trials. Biometrics, 1979: p. 549-556. 11. Cramer, H., Mathematical methods of statistics (pms-9) volume 9 princeton university press. Princeton, NJ, USA, 2016. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信