§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1607201212545500
DOI 10.6846/TKU.2012.00640
論文名稱(中文) 異質接面太陽能電池材料-雙卟啉衍生物之理論計算探討
論文名稱(英文) Theoretical Studies on the Electronic Structures and Photophysical Properties of the Diporphyrin Derivatives for the Bulk Heterojunction Solar Cell Material
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 蔡明佳
研究生(英文) Ming-Jia Tsai
學號 699160429
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-06-19
論文頁數 84頁
口試委員 指導教授 - 王伯昌
委員 - 江志強
委員 - 陳正隆
委員 - 李世元
關鍵字(中) 異質接面太陽能電池
關鍵字(英) Diporphyrin
BHJ Solar cell
EHOMO
DFT
B3LYP
第三語言關鍵字
學科別分類
中文摘要
卟啉(Porphyrin)因具有良好的光和熱穩定性,吸收光譜的波段範圍廣泛。在可見光範圍內具有許多獨特的物理性質與化學性質,一直都是熱門的(BulkHeterojunction, BHJ)太陽能電池之電子予體材料。本篇主要探討四種不同連結基的Diporphyrin衍生物,其中間連結基分別為Phenylene、Carbazolylene、Fluorenylene、Anthracene,分別為PDP、CDP、FDP、ADP。利用理論計算的分法分析它們的相關性質,如結構、能隙與吸收光譜...等,之後再加入C60作為電子受體,計算出摻混後之結構、能隙與吸收光譜表現,試圖找出低EHOMO值與吸收光譜範圍較廣的電子予體,以便於提升BHJ太陽能電池的(Open CircuitVoltage, Voc)。經由計算所得結果,討論Diporphyrin衍生物的相關性質,最後再比較加入C60之後的變化。主要先以結構分析其兩面角、鍵長與鍵角,觀察是否不同的連結基會造成不同的影響以及加入C60後的變化,接著比較EHOMO、ELUMO與能隙大小,最後再比較吸收光譜。其結果發現ADP在加入C60前後,其EHOMO值與吸收光譜範圍都有不錯的表現,對於BHJ有機太陽能電池也許是一個具有潛力的發展性材料。
英文摘要
Porphyrin has a good thermal and light stability, which has a wide range of
absorption spectra. In the visible range, it has many unique physical and chemical
properties, which has the potential to be applied in BHJ (Bulk Heterojunction) solar cell material. In this study, we focused on four different link-based Diporphyrin derivatives, which link-based were Phenylene, Carbazolylene, Fluorenylene and Anthracene (PDP,CDP, FDP, and ADP). We used a theoretical calculation methods to analysis the electronic and photophysical properties of diporphyrin derivatives, such as structure, energy gap and absorption spectra, ... etc. We also considered the electronic and photophysical properties of the mixing structures which consist of the different diporphyrin derivatives (electron donor) and C60 (electron acceptor). Then, we tried to find the electron donor, which has a relative lower EHOMO value and a larger absorption spectrum range, in order to enhance the BHJ solar cell Voc (Open Circuit Voltage).

In this study, We discussed the dihedral angle, bond length and bond angle of these
diporphyrin derivatives, and investigated the influence of different π conjugation linker for the diporphyrin derivatives and diporphyrin derivatives/C60. We also compared the EHOMO,ELUMO and energy gap with these system. The calculation results exhibit that ADP is betterthan other diporphyrin derivatives and may be a potential material which applied in the BHJ solar cells.
第三語言摘要
論文目次
目錄 頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ

第一章 緒論 1
1-1 前言 1
1-2 太陽能電池的種類 2
1-2-1 無機太陽能電池 3
1-2-2 有機太陽能電池 5
1-3 異質接面太陽能電池發展 10
1-4 影響太陽能電池之效能 12
1-5 文獻回顧和研究動機 15
第二章 原理與方法 20
2-1 量子力學 20
2-2 計算方法(Computational Methods) 21
2-2-1 基底函數組(Basis Set) 21
2-2-2 基底函數組效應(Basis Sets Effect) 24
2-2-3 Hartree — Fock 方程式 29
2-2-4 密度泛函數理論(Density Function Theory) 33
2-2-5 半經驗計算方法 37
第三章結果討論 42
3-1 卟啉 ( Porphyrin ) 計算方法選擇比較 43
3-2 雙卟啉 ( Diporphyrin ) 衍生物 47
3-2-1 結構討論 49
3-2-2 EHOMO、ELUMO、能隙與pDOS 分析 53
3-2-3 光譜分析 57
3-3 雙卟啉 ( Diporphyrin ) 衍生物摻混C60 後之討論 64
3-3-1 結構討論 64
3-3-2 雙卟啉與C60 之距離討論 68
3-3-3 EHOMO、ELUMO、能隙與pDOS 分析 70
3-3-4 光譜分析 74

第四章 結論 81
第五章 參考文獻 83

表目錄 頁次
表 1-1 太陽能電池的種類 2
表 3-1 不同基底函數搭配B3LYP與實驗值結構比較 45
表 3-2 meso-linked與β-linked的 Diporphyrin 衍生物之鍵長( Ǻ )、鍵角( o )與兩面角( o ) 52
表 3-3 Diporphyrin 衍生物之能階比較 54
表 3-4 Diporphyrin 衍生物的EHOMO 與ELUMO之pDOS 分析 55
表 3-5 Diporphyrin 衍生物之吸收光譜 57
表 3-6 Diporphyrin 衍生物摻混C60後之鍵長( Ǻ )、鍵角( o )與兩面角( o ) 67
表 3-7 Diporphyrin 衍生物與C60最短距離d1 (Ǻ)、d2 (Ǻ) 69
表 3-8 Diporphyrin 衍生物摻混C60 後之能階比較 70
表 3-9 Diporphyrin 衍生物摻混C60 後EHOMO 與ELUMO之pDOS 分布比例 72
表 3-10 Diporphyrin 衍生物摻混C60 後之吸收光譜 74

圖 目 錄 頁次
圖 1-1 單晶矽太陽能電池外觀 3
圖 1-2 多晶矽太陽能電池外觀 4
圖 1-3 非晶矽太陽能電池外觀 4
圖 1-4 染料敏化太陽能電池的基本運作原理 7
圖 1-5 BHJ 結構示意圖 8
圖 1-6 異質接面太陽能電池的基本運作原理 10
圖 1-7 常用之電子予體、電子受體 11
圖 1-8 電子予體/受體單層異質接面的結構 11
圖 1-9 PH3T/PCBM元件結構圖 12
圖 1-10 太陽能電池電壓、電流之關係圖 13
圖 1-11 Diporphyrin 化合物之結構 17
圖 1-12 單層異質接面結構太陽能電池的光電轉換效率圖 18
圖 3-1 Hyperchem 所建構卟啉之模型 43
圖 3-2 卟啉結構與位置編號 44
圖 3-3 不同基底函數之MAE比較 46
圖 3-4 Diporphyrin 衍生物與連結基結合的示意圖 48
圖 3-5 中間連結基的結構圖 49
圖 3-6 Diporphyrin 衍生物之結構與鍵長、鍵角、兩面角示意圖 52
圖 3-7 Diporphyrin 衍生物的HOMO與LUMO分子軌域圖 56
圖 3-8 Diporphyrin 衍生物主要躍遷的分子軌域圖 63
圖 3-9 Diporphyrin 衍生物摻混C60後之鍵長與鍵角示意圖 66
圖 3-10 測量 Diporphyrin 衍生物與C60最近距離示意圖 68
圖 3-11 Diporphyrin 衍生物摻混C60後的HOMO與LUMO分子軌域圖 73
圖 3-12 Diporphyrin 衍生物主要躍遷的分子軌域圖 80
參考文獻
參考文獻:
[1] 楊德仁, 太陽能電池材料, 五南, 2008.
[2] 呂宗昕, 全面攻進奈米科技與太陽電池:一看就懂的圖解,讓高科技輕鬆變
成你的知識力, 天下, 2009.
[3] L.D. Pulfry, Photovoltaic Power Generation, New York : Van Nostrand Reinhold Co.,1978.
[4] B. O. Regan, M. Gratzel, Nature., 1991, 353, 737.
[5] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science., 1992, 258, 1474.
[6] Y.J. Cheng, S.H. Yang, C.S. Hsu, Chem Rev., 2009, 109, 5868.
[7] I. D. Petsalakis, G. Theodorakopoulos, Chem. Phys. Lett., 2008, 466, 189.
[8] D. M. Guldi, F. Spänig, D. Kreher, I. F. Perepichka, C. V. D. Pol, M. R. Bryce, K.
Ohkubo, S. Fukuzumi, Chem. Eur. J., 2008, 14, 250.
[9] D. I. Schuster, K. Li, D. M. Guldi, A. Palkar, L. Echegoyen, C. Stanisky, R. J.
Cross, M. Niemi, N. V. Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc., 2007,
129, 15973.
[10] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J.
C. Hummelen, Chem. Mater., 2006, 18, 3068.
[11] H. Kallmans, M. Pope, J. Chem. Phys., 1958, 30, 585.
[12] C. W. Tang, Appl. Phy. Lett., 1986, 48, 183.
[13] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 2005,
4, 864.
[14] G. Yu, C. Zhang, A.J. Heeger, Appl. Phys. Lett., 1993, 64, 1540.
[15] I. D. Petsalakis, G. Theodorakopoulos, Chem. Phys. Lett., 2008, 466, 189.
[16] D. M. Guldi, F. Spänig, D. Kreher, I. F. Perepichka, C. V. D. Pol, M. R. Bryce, K.
Ohkubo, S. Fukuzumi, Chem. Eur. J., 2008, 14, 250.
[17] D. I. Schuster, K. Li, D. M. Guldi, A. Palkar, L. Echegoyen, C. Stanisky, R. J.
Cross, M. Niemi, N. V. Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc., 2007,
129, 15973.
[18] F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, D. Kronholm, P. W. M. Blom, J.
C. Hummelen, Chem. Mater., 2006, 18, 3068.
[19] P. Morvillo, Solar Energy Materials & Solar Cells., 2008, 92, 1192.
[20] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C Waldauf, A. J. Heeger, C.
J. Brabec, Adv. Mater., 2006, 18, 789.
[21] 張正華, 有機與塑膠太陽能電池, 五南, 2007.
[22] P. Mukherjee, Ray, A., Bauri, A.K., Bhattacharya, S, Mol. Liq., 2009, 148, 51.
[23] H. Mizuseki, N. Igarashi, R.V. Belosludov, A.A. Farajian, Y. Kawazoe, Synth.
Met., 2003, 138, 281.
84
[24] H . Uno, A. Masumoto, N. Ono, J. Am. Chem. Soc., 2003, 125, 12082.
[25] S. Bhattacharya, K. Tominaga, T. Kimura, H. Uno, N. Komatsu, Chem. Phys.
Lett., 2007, 433 ,395.
[26] S. Mukherjee, A.K. Bauri, S. Bhattacharya, J. Mol. Struct., 2010, 965, 101.
[27] I. N. Levine, Quantum Chemistry, 4th ed., Prentice Hall: New York, 1991.
[28] 劉東昇, 化學量子力學, 徐氏基金會, 1998.
[29] A. Szabo, Ostlund, N. S. Modern Quantum Chemistry, 1st ed., McGRAW-HILL:
New York, 1982.
[30] 吳琦初, 物理化學計算(下冊), 中央圖書出版社, 1997.
[31] Æ. Frisch, J. B. Foresman, Exploring Chemistry with Electronic Structure
Methods, 2nd ed., Gaussian, Inc.: Pittsburgh, PA, 1996.
[32] HyperChem®, Computational Chemistry, Hypercube, inc.: Waterloo, Ontario,
1996.
[33] W. J. Hehre, J. Yu, P. E. Klunzinger, L. Lou, A Brief Guide to Molecular
Mechanics and Quantum Chemical Calculations, Wavefunction, Inc.: Irvine, CA,
1998.
[34] R. Hoffmann, J. Chem. Phys., 1963, 39, 1397.
[35] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc.,
1985, 107, 3902.
[36] M. J. S. Dewar, E. G. Zoebisch, THEOCHEM., 1988, 49, 1.
[37] W. Thiel, A. A. Voityuk, J. Am. Chem. Soc., 1996, 100, 616.
[38] X. B. Liu, E. K. Yeow, L., S. Velate , R. P. Steer, Phys. Chem. Chem. Phys.,
2006, 8, 1298.
[39] B.M.L. Chen, A. Tulinsky, J. Am. Chem. Soc., 1972, 94, 414.
[40] P. Debabrata, S. Bhattacharya, Spectrochimica Acta Part A., 2011, 79, 638.
[41] Y.-B. Wang, Z. Lin, J. Am. Chem. Soc., 2003, 125, 6072.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信