| 系統識別號 | U0002-1606202513130800 |
|---|---|
| DOI | 10.6846/tku202500252 |
| 論文名稱(中文) | 利用 VOSviewer 進行 AI 教育領域的書目計量分析:研究熱點與發展趨勢 |
| 論文名稱(英文) | Utilizing VOSviewer for AI in Education Bibliometric Analysis of AI in Education: Research Hotspots and Development Trends |
| 第三語言論文名稱 | |
| 校院名稱 | 淡江大學 |
| 系所名稱(中文) | 教育科技學系碩士班 |
| 系所名稱(英文) | Department of Educational Technology |
| 外國學位學校名稱 | |
| 外國學位學院名稱 | |
| 外國學位研究所名稱 | |
| 學年度 | 113 |
| 學期 | 2 |
| 出版年 | 114 |
| 研究生(中文) | 王俊彥 |
| 研究生(英文) | WONG CHUN YIN |
| 學號 | 610730011 |
| 學位類別 | 碩士 |
| 語言別 | 繁體中文 |
| 第二語言別 | |
| 口試日期 | 2025-05-28 |
| 論文頁數 | 77頁 |
| 口試委員 |
指導教授
-
鍾志鴻(sunboy1120@gmail.com)
口試委員 - 林逸農(lineno@gms.tku.edu.tw) 口試委員 - 卓美秀(max72621@gmail.com) |
| 關鍵字(中) |
VOSviewer 人工智能輔助學習 個人化學習 書目計量分析 |
| 關鍵字(英) |
VOSviewer Intelligent Tutoring Systems Personalized Learning Bibliometric Analysis |
| 第三語言關鍵字 | |
| 學科別分類 | |
| 中文摘要 |
本研究透過書目計量分析法(Bibliometrics),利用 VOSviewer 軟體對 2015年至2024年間收錄於 Scopus 學術資料庫的共 1,038 篇 AI 與教育領域相關文獻進行資料可視化分析,目的為揭示 AI 教育領域的研究熱點、主題演變以及發展趨勢。研究發現,此領域的研究熱點已由底層技術轉向生成式 AI 與個人化應用,並朝自動化與多模態教學技術發展。分析指出學術合作網絡逐步成形,核心學者與高頻關鍵詞顯示生成式 AI 在教學應用中正受高度關注。建議未來應重視教育公平、教師角色協調及多模態教學實證研究,並拓展語言與方法面向,深化質化驗證,以回應快速變動的 AI 教育場域。此研究提供了該領域未來研究與政策規劃的重要參考依據。 |
| 英文摘要 |
This study adopts bibliometric analysis and utilizes VOSviewer software to conduct a visualized analysis of 1,038 AI and education-related publications indexed in the Scopus academic database from 2015 to 2024. The aim is to reveal the research hotspots, thematic evolution, and development trends in the field of AI in education. The findings indicate that the research focus in this domain has shifted from foundational technologies to generative AI and personalized applications, progressing toward automation and multimodal teaching technologies. The analysis also shows that academic collaboration networks are gradually taking shape, with core scholars and high-frequency keywords reflecting the growing attention to generative AI in educational applications. It is recommended that future efforts emphasize educational equity, role coordination between teachers and AI systems, and empirical studies on multimodal teaching. Furthermore, expanding the scope of languages and methodologies, and deepening qualitative validation are essential to address the rapidly evolving AI educational landscape. This study offers valuable references for future research and policy planning in this field. |
| 第三語言摘要 | |
| 論文目次 |
謝誌 i 目次 iv 表次 vi 圖次 vii 第一章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的 4 第三節 研究問題 5 第四節 研究範圍與限制 5 第五節 名詞解釋 10 第二章 文獻探討 14 第一節 人工智能技術在教育領域的應用發展 14 第二節 人工智能技術在教育中的研究熱點 16 第三節 文獻探討的現況與未來研究方向 21 第四節 AI 教育的跨領域應用與挑戰 22 第五節 生成式 AI 對教育評量與教材設計的影響 24 第六節 VOSviewer 在 AI 研究中的應用與分析潛力 26 第三章 研究方法與實施 28 第一節 研究結構 28 第二節 資料蒐集與篩選 33 第三節 資料分析方法 35 第四節 研究工具及其應用 37 第四章 研究結果與闡述分析 39 第一節 關鍵字共現分析 39 第二節 文獻共被引分析 47 第三節 作者共被引分析 52 第四節 共同作者分析 57 第五節 主題演化分析 62 第五章 研究結論與建議 66 第一節 結論 66 第二節 建議 69 第三節 後續研究與建議 69 參考文獻 71 表次 表 2-1-1 人工智能輔助學習系統發展歷史 17 表 2-2-2 智慧教學系統四大基礎組件 19 表 2-2-3 智慧教學系統的開發流程 20 圖次 圖 3-1-3 研究流程圖 30 圖 3-1-2 PRISMA 文獻研究篩選流程圖 33 圖 4-1-1 關鍵字共現分析 VOSviewer 參數篩選流程圖 41 圖 4-1-2 關鍵字共現分析網絡圖 42 圖 4-2-1 文獻共被引分析 VOSviewer 參數篩選流程圖 49 圖 4-2-2 文獻共被引分析網絡圖 50 圖 4-3-1 作者共被引分析 VOSviewer 參數篩選流程圖 54 圖 4-3-2 作者共被引分析網絡圖 55 圖 4-4-1 共同作者分析 VOSviewer 參數篩選流程圖 58 圖 4-4-2 共同作者分析網絡圖 59 圖 4-4-2 主題演化分析網絡圖 63 |
| 參考文獻 |
Amershi, S., Conati, C., & Carenini, G. (2014). Machine learning to support adaptive user interfaces and learning technologies. (pp. 15-27). Proceedings of the 2014 International Conference on Educational Data Mining. Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 456-462. BaayenH.R. (2001). Word frequency distributions. Kluwer Academic Publishers. Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 3-17. Bond, M., Buntins, K., Bedenlier, S., Zawacki-Richter, O., & Kerres, M. (2021). Mapping research in student engagement and educational technology in higher education: A systematic evidence map. International Journal of Educational Technology in Higher Education, 1-30. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 179-255. BozkurtA., & SharmaR. C. (2020). Emergency remote teaching in a time of global crisis due to Coronavirus pandemic. Asian Journal of Distance Education, 15(1), 1-6. BradfordC.S. (1934). Sources of information on specific subjects. Engineering, 85-86. BrookesC.B. (1977). Theory of Bradford's law. Journal of Documentation, 180-209. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., & Dhariwal, P. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems. Computation and Language, 33, 1877-1901. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., . . . C. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 1877-1901. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., & Amodei, D. (2020). Language models are few-shot learners. (pp. 1877-1901). Advances in Neural Information Processing Systems. Chen, H., Chiang, R. H. L., & Storey, V. C. (2018). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 1165-1188. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 75264-75278 . Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 1382-1402. CoboM. J., López-HerreraA. G., Herrera-ViedmaE., & HerreraF. (2011). . Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7). Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language processing (almost) from scratch. Journal of Machine Learning Research, 2493-2537. Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1995). Intelligent tutoring systems and learning by doing: Enhancing student learning in mathematics and physics. Journal of Educational Psychology, 68-75. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (pp. 4171-4186). Donthu, N., Kumar, S., Pattnaik, D., & Lim, W. M. (2021). A bibliometric analysis of the marketing literature from 1995 to 2020. Journal of Business Research, 489-507. Egghe, L., & Rousseau, R. (1990). Introduction to informetrics: Quantitative methods in library, documentation, and information science. Elsevier Science Publishers. Elsevier. (2004). Elsevier. Retrieved from Content coverage guide: https://www.elsevier.com/solutions/scopus Freedman, J. D., & Nappier, I. A. (2023). GPT-4 to GPT-3.5: A Look at the Competency of OpenAI's GPT on the Plastic Surgery In-Service Training Exam. ArXiv, 30. FreedmanD.R. (2000). Challenges in building intelligent tutoring systems. Journal of Artificial Intelligence in Education, 145-165. Fryer, L. K., & Carpenter, R. (2006). Emerging chatbots in education: A conversation-based approach to learning. Journal of Educational Technology & Society, 45-56. Gao, S., Zhang, Y., & Wang, H. (2020). The evolving landscape of AI in education: A bibliometric analysis of AI-related education research. Computers & Education, 103967. GlänzelW. (2003). Bibliometrics as a research field: A course on theory and application of bibliometric indicators. Scientometrics, 81-102. GlänzelW., & SchubertA. (2005). Analysing scientific networks through co-authorship. 於 MoedF.H., GlänzelW., & SchmochU., Handbook of quantitative science and technology research (頁 257-276). Springer. Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Journal of Educational Technology & Society, 11-21. Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign. Johnson, A., & Brown, R. (2022). Data-driven decision making in AI education policy. Journal of Educational Policy, 85-101. Katz, J. S, & Martin, B. R. (1997). What is research collaboration? Research Policy, 1-18. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 1-18. Li, X., & Zhao, Y. (2020). The impact of AI systems on student learning efficiency and knowledge retention. Journal of Educational Technology & Society, 123-135. Li, X., Wang, Y., Zhang, J., & Liu, H. (2021). Interdisciplinary collaboration in advancing natural language processing: Current trends and future directions. Journal of Computational Linguistics, 345-362. Liu, X., Yin, Y., Liu, J., & Dunford, M. (2027). isualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Journal of Informetrics, 385-402. LotkaJ.A. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 317-323. Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education. Luo, J., & Huang, Y. (2022). Co-citation analysis in AI education research: Identifying classic literature and key contributors. Journal of Educational Technology & Society, 75-90. Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing. MIT Press. McCarthy, J. (1956). The role of AI in education: Initial thoughts. Proceedings of the Dartmouth Conference on Artificial Intelligence. McKinsey & Company. (2023). The State of AI in 2023: Generative AI’s Breakout Year. McKinsey Global Institute. Mishra, D., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Dubey, R., & Wamba, S. F. (2018). Vision, applications and future challenges of Internet of Things: A bibliometric study of the recent literature. Industrial Management & Data Systems, 1201-1235. Mishra, D., Gunasekaran, Childe, S. J., Papadopoulos, T., Dubey, R., & Wamba, S. F. (2018). Vision, applications, and future challenges of Internet of Things: A bibliometric study of recent literature. Industrial Management & Data Systems, 1201-1235. Newell, A., & Newell, A. S. (1956). The Logic Theory Machine: A Complex Information Processing System. IRE Transactions on Information Theory, 61-79. Nkambou, R., Bourdeau, J., & Mizoguchi, R. (2010). Advances in intelligent tutoring systems. 於 Advances in intelligent tutoring systems. Springer. NwanaS.H. (1990). Intelligent tutoring systems: An overview. Artificial Intelligence Review, 251-277. Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 348-349. PwC. (2023). The State of AI in 2023: Generative AI’s Breakout Year. PwC. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI. Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson. SearleR.J. (2020). Artificial Intelligence and the Chinese Room Argument. Philosophy of Mind Quarterly, 45-60. Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. International Journal of Artificial Intelligence in Education, 50-70. Siemens, G., & Baker, R. S. (2012). Learning analytics and educational data mining: Towards communication and collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 252-254. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 484-489. SmallH. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 265-269. Tang, X., Chen, X., & Zhao, Y. (2021). A review of artificial intelligence in education: Opportunities and challenges. Educational Technology Research and Development, 20-36. UNESCO. (2020). Education: From disruption to recovery. UNESCO Report. Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 523-538. Van Leeuwen, T. N., Moed, H. F., Tijssen, R. J. W., Visser, M. S., & Van Raan, A. F. J. (2001). Language biases in the coverage of the Science Citation Index and its consequences for international comparisons of national research performance. Scientometrics, 335-346. VaswaniA., ShazeerN., ParmarN., UszkoreitJ., JonesL., GomezN.A., . . . & PolosukhinI. (2017). Attention is all you need. ArXiv. Wang, T., & Zhou, Y. (2021). Author co-occurrence analysis in AI education: Global collaboration patterns and key contributors. Journal of Educational Research and Development, 102-118. Wang, X., & Brown, R. (2019). Automated essay scoring systems: Applications of AI in assessing writing proficiency. Journal of Educational Assessment, 120-135. Wang, Y., & Liu, H. (2015). Intelligent tutoring systems in education: Breaking the time and space limitations of traditional teaching. Journal of Educational Technology Development and Exchange, 50-65. WangM. (2010). Personalized learning: A learner-centered approach to education. Journal of Educational Technology & Society, 15-25. White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science, 327-355. Woolf, B. P. (1992). Building intelligent tutoring systems: A guide to AI-enhanced learning environments. Morgan Kaufmann. Zawacki-Richter, O., Marín, V. I., Bond, & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education: Emerging trends and future research directions. International Journal of Educational Technology in Higher Education, 1-27. Zhang, X., & Lin, Y. (2019). Keyword co-occurrence analysis in the field of AI education: Insights and trends. Journal of Educational Technology Development and Exchange, 25-40. Zhao, D., & Strotmann, A. (2015). Analysis and visualization of citation networks. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1-207. Zhou, W., Xu, K., & Wu, J. (2020). The applications of machine learning in education: Current practices and future. IEEE Transactions on Learning Technologies, 1-12. Zhu, Y., & Liu, X. (2020). Limitations of bibliometric analysis in capturing in-depth content: A study on AI education research. Journal of Educational Technology Development and Exchange, 45-62. Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human ecology. Addison-Wesley. |
| 論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信