系統識別號 | U0002-1606202415210800 |
---|---|
DOI | 10.6846/tku202400223 |
論文名稱(中文) | 基於ICT概念構建交易策略對黃金差價合約回測績效之研究 |
論文名稱(英文) | Research on the Backtesting Performance of Gold CFDs Based on Trading Strategies Constructed with ICT Concepts |
第三語言論文名稱 | |
校院名稱 | 淡江大學 |
系所名稱(中文) | 資訊管理學系碩士班 |
系所名稱(英文) | Department of Information Management |
外國學位學校名稱 | |
外國學位學院名稱 | |
外國學位研究所名稱 | |
學年度 | 112 |
學期 | 2 |
出版年 | 113 |
研究生(中文) | 蘇贊權 |
研究生(英文) | CHAN KUN SOU |
學號 | 611636019 |
學位類別 | 碩士 |
語言別 | 繁體中文 |
第二語言別 | |
口試日期 | 2024-06-01 |
論文頁數 | 37頁 |
口試委員 |
指導教授
-
梁德昭(tcliang@mail.tku.edu.tw)
口試委員 - 連俊瑋(jwlian@nutc.edu.tw) 口試委員 - 張應華(yhchang@mail.tku.edu.tw) 口試委員 - 梁德昭 |
關鍵字(中) |
程式交易 交易策略 價差合約 |
關鍵字(英) |
Inner Circle Trader Programmatic Trading Trading Strategy Contracts for Difference |
第三語言關鍵字 | |
學科別分類 | |
中文摘要 |
本研究旨在探討由Michael Joe Huddleston提出的Inner Circle Trader (ICT) 概念在黃金(XAUUSD)差價合約中的應用及其績效。雖然基於技術指標的交易策略已在學術界廣泛研究,但以ICT概念和價格行為的交易策略在學術研究卻相對較少,特別是缺乏程式交易並回測相結合的研究。本文基於ICT概念的框架,構建出做多和做空交易策略,選擇斐波那契比率作為交易執行的參數,並在不同的時間框架進行觀察。 回測結果顯示,基於ICT概念構建的交易策略能在黃金差價合約市場中實現正向回報,證明ICT概念和基於價格行為分析的交易策略在現代金融市場中的應用價值和有效性。此研究不僅填補了學術領域中相關研究的空白,也為差價合約市場的投資者對相關的交易策略提供了一種新的參考依據,幫助他們更好地捕捉市場機會並優化交易決策。 |
英文摘要 |
This study explores the application and performance of the Inner Circle Trader (ICT) concept proposed by Michael Joe Huddleston in the gold (XAUUSD) Contract For Difference (CFD) market. While trading strategies based on technical indicators have been extensively studied in academia, there is relatively little academic research on ICT concepts and price action trading strategies, especially those combined with algorithmic trading back testing. This paper constructs long and short trading strategies based on the ICT concepts, selecting Fibonacci ratios as the parameters for executing trades, and observing across various time frames. The back testing results show that the ICT trading strategy, through its interpretation of market price actions, can generate positive returns in the Gold CFD market. This confirms the applicability and effectiveness of price action-based trading strategies in the financial market. This study not only fills a research gap, but it also provides investors in the CFD market with a new reference point for related trading strategies, potentially enabling them to better capture market opportunities and optimize trading decisions. |
第三語言摘要 | |
論文目次 |
目錄 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 第二章 保證金交易市場概述 4 2.1. 差價合約 4 2.2. 優勢和特點 5 2.3. 歷史背景 6 2.4. 交易成本 6 2.5. 市場參與者 9 第三章 理論探討 12 3.1. 技術指標分析 12 3.2. 價格行為分析 13 3.3. INNER CIRCLE TRADER理論 13 3.3.1. 蠟燭圖 16 3.3.2. Swing Points 17 3.3.3. 市場結構轉變 18 3.3.4. Fair Value Gap 19 3.3.5. Order Block 21 3.3.6. 斐波那契 22 3.4. 小結 23 第四章 交易績效分析 24 4.1. 資料與工具 24 4.2. 買賣策略框架 24 4.3. 交易策略回測分析 25 第五章 總結與展望 33 5.1. 總結 33 5.2. 展望 33 參考文獻 35 圖 目錄 圖 1外匯交易中領取隔夜利息示意圖 8 圖 2 外匯交易中支付隔夜利息示意圖 8 圖 3 農業生產者差價合約對沖策略之盈虧分析 9 圖 4 市場資金流動關係 14 圖 5 INTERBANK PRICE DELIVERY ALGORITHM, IPDA 15 圖 6 蠟燭圖 16 圖 7 SWING HIGH 示意圖 17 圖 8 SWING LOW 示意圖 18 圖 9 MARKET STRUCTURE SHIFT示意圖 19 圖 10 買方FAIR VALUE GAP示意圖 19 圖 11 賣方FAIR VALUE GAP示意圖 20 圖 12 FVG價格行為影響示意圖 20 圖 13 ORDER BLOCK的價格行為影響示意圖 21 圖 14 OB & FVG & MSS交易策略的資產淨值走勢圖(短時間段區間,時間框架M5) 28 圖 15 OB & FVG & MSS交易策略的資產淨值走勢圖(長時間段區間,時間框架M5) 28 圖 16 OB & FVG & MSS交易策略的資產淨值走勢圖(短時間段區間,時間框架M15) 29 圖 17 OB & FVG & MSS交易策略的資產淨值走勢圖(長時間段區間,時間框架M15) 29 圖 18 OB & FVG & MSS交易策略的資產淨值走勢圖(短時間段區間,時間框架M30) 30 圖 19 OB & FVG & MSS交易策略的資產淨值走勢圖(長時間段區間,時間框架M30) 30 圖 20 OB & FVG & MSS交易策略的資產淨值走勢圖(短時間段區間,時間框架H1) 30 圖 21 OB & FVG & MSS交易策略的資產淨值走勢圖(長時間段區間,時間框架H1) 31 圖 22 OB & FVG & MSS交易策略的資產淨值走勢圖(混合時間框架) 31 表 目錄 表格 1 XAUUSD XIRR年化報酬基準 26 表格 2 各時間框架下ICT中各種概念之出現次數 (短時間段區間) 27 表格 3 各時間框架下ICT中各種概念之出現次數 (長時間段區間) 27 表格 4 OB & FVG & MSS交易策略參數設定和回測結果(時間框架M5) 28 表格 5 OB & FVG & MSS交易策略參數設定和回測結果(時間框架M15) 29 表格 6 OB & FVG & MSS交易策略參數設定和回測結果(時間框架M30) 29 表格 7 OB & FVG & MSS交易策略參數設定和回測結果(時間框架H1) 30 表格 8 OB & FVG & MSS交易策略參數設定和回測結果(混合時間框架) 31 |
參考文獻 |
[1] Alexander, Sidney S. “Price Movements in Speculative Markets: Trends or Random Walks.” Industrial Management Review (Pre-1986), vol. 2, no. 2, May 1961, p. 7. ABI/INFORM Collection, 214025400. [2] Allahyari Soeini, Reza, et al. “Using Fibonacci Numbers to Forecast the Stock Market.” International Journal of Management Science and Engineering Management, vol. 7, no. 4, Jan. 2012, pp. 268–79. DOI.org (Crossref), https://doi.org/10.1080/17509653.2012.10671232. [3] Barber, Brad M., et al. “Just How Much Do Individual Investors Lose by Trading?” Review of Financial Studies, vol. 22, no. 2, Feb. 2009, pp. 609–32. DOI.org (Crossref), https://doi.org/10.1093/rfs/hhn046. [4] Bhattacharya, Sukanto, and Kuldeep Kumar. A Computational Exploration of the Efficacy of Fibonacci Sequences in Technical Analysis and Trading. 2006. [5] Brooks, Al. Reading Price Charts Bar by Bar: The Technical Analysis of Price Action for the Serious Trader. Wiley, 2009. [6] Caporale, Guglielmo Maria, and Alex Plastun. “Price Gaps: Another Market Anomaly?” Investment Analysts Journal, vol. 46, no. 4, Oct. 2017, pp. 279–93. DOI.org (Crossref), https://doi.org/10.1080/10293523.2017.1333563. [7] Chang, Xin, et al. “Stock Liquidity and Stock Price Crash Risk.” Journal of Financial and Quantitative Analysis, vol. 52, no. 4, Aug. 2017, pp. 1605–37. DOI.org (Crossref), https://doi.org/10.1017/S0022109017000473. [8] Cross, Frank. “The Behavior of Stock Prices on Fridays and Mondays.” Financial Analysts Journal, vol. 29, no. 6, Nov. 1973, pp. 67–69. DOI.org (Crossref), https://doi.org/10.2469/faj.v29.n6.67. [9] Douglas Foster, F., et al. “CFDs, Forwards, Futures and the Cost-of-Carry.” Pacific-Basin Finance Journal, vol. 54, Apr. 2019, pp. 183–98. DOI.org (Crossref), https://doi.org/10.1016/j.pacfin.2018.05.004. [10] Fama, Eugene F. “Efficient Capital Markets: A Review of Theory and Empirical Work.” The Journal of Finance, vol. 25, no. 2, May 1970, p. 383. DOI.org (Crossref), https://doi.org/10.2307/2325486. [11] Feng, Xunan, et al. “Smart Money or Dumb Money? A Study on the Selection Ability of Mutual Fund Investors in China.” The North American Journal of Economics and Finance, vol. 30, Nov. 2014, pp. 154–70. DOI.org (Crossref), https://doi.org/10.1016/j.najef.2014.09.004. [12] Filipenka, D., and E. M. Thompson. Unlocking Success in ICT 2022 Mentorship: The Smart Money Guide to The Full ICT Day Trading Model by LumiTraders: SMC with The Full ICT Day Trading Model for Futures and Forex Trading Success. LumiTraders, 2023, https://books.google.com.tw/books?id=-cHbEAAAQBAJ. [13] Gibson, Scott, and Assem Safieddine. “Does Smart Money Move Markets?” The Journal of Portfolio Management, vol. 29, no. 3, Apr. 2003, pp. 66–77. DOI.org (Crossref), https://doi.org/10.3905/jpm.2003.319885. [14] Grimes, Adam. The Art and Science of Technical Analysis: Market Structure, Price Action, and Trading Strategies. Wiley, 2012. [15] Kuo, Wen‐Hsiu, et al. “The Impacts of Individual and Institutional Trading on Futures Returns and Volatility: Evidence from Emerging Index Futures Markets.” Journal of Futures Markets, vol. 35, no. 3, Mar. 2015, pp. 222–44. DOI.org (Crossref), https://doi.org/10.1002/fut.21683. [16] Li, Xindan, et al. “Do Wealthy Investors Have an Informational Advantage? Evidence Based on Account Classifications of Individual Investors.” Journal of Empirical Finance, vol. 44, Dec. 2017, pp. 1–18. DOI.org (Crossref), https://doi.org/10.1016/j.jempfin.2017.07.001. [17] Ludwig, Michael. “Speculation and Its Impact on Liquidity in Commodity Markets.” Resources Policy, vol. 61, June 2019, pp. 532–47. DOI.org (Crossref), https://doi.org/10.1016/j.resourpol.2018.05.005. [18] Mei, Jianping, et al. “Behavior Based Manipulation: Theory and Prosecution Evidence.” SSRN Electronic Journal, 2003. DOI.org (Crossref), https://doi.org/10.2139/ssrn.457880. [19] Nison, Steve. Japanese Candlestick Charting Techniques : A Contemporary Guide to the Ancient Investment Techniques of the Far East. 1991. [20] Oanda Labs. 什麼是隔夜利息(融資成本)?. https://www.oanda.com/bvi-ft/lab-education/forex/aboutfx-swap/. [21] Olson, Dennis, et al. “The Evolution of the Weekend Effect in US Markets.” The Quarterly Review of Economics and Finance, vol. 58, Nov. 2015, pp. 56–63. DOI.org (Crossref), https://doi.org/10.1016/j.qref.2015.01.005. [22] Plastun, Oleksiy, et al. “Price Gap Anomaly in the US Stock Market: The Whole Story.” SSRN Electronic Journal, 2019. DOI.org (Crossref), https://doi.org/10.2139/ssrn.3461283. [23] Selvamuthu, Dharmaraja, et al. “Indian Stock Market Prediction Using Artificial Neural Networks on Tick Data.” Financial Innovation, vol. 5, no. 1, Dec. 2019, p. 16. DOI.org (Crossref), https://doi.org/10.1186/s40854-019-0131-7. [24] Subrahmanyam, Avanidhar. “Risk Aversion, Market Liquidity, and Price Efficiency.” Review of Financial Studies, vol. 4, no. 3, July 1991, pp. 417–41. DOI.org (Crossref), https://doi.org/10.1093/rfs/4.3.417. [25] Tse, Yiuman, and Tatyana Zabotina. “Do Designated Market Makers Improve Liquidity in Open‐outcry Futures Markets?” Journal of Futures Markets, vol. 24, no. 5, May 2004, pp. 479–502. DOI.org (Crossref), https://doi.org/10.1002/fut.10117. |
論文全文使用權限 |
如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信